Loading…

Calcium phosphate cement reinforced with poly (vinyl alcohol) fibers: An experimental and numerical failure analysis

Calcium phosphate cements (CPCs) have been widely used during the past decades as biocompatible bone substitution in maxillofacial, oral and orthopedic surgery. CPCs are injectable and are chemically resemblant to the mineral phase of native bone. Nevertheless, their low fracture toughness and high...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2021-01, Vol.119, p.458-471
Main Authors: Paknahad, Ali, Goudarzi, Mohsen, Kucko, Nathan W., Leeuwenburgh, Sander C.G., Sluys, Lambertus J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-f7cc6388e73a1500e47cf69dfb5f33ca252b7f919e924a2bf0db75e39349e3853
cites cdi_FETCH-LOGICAL-c436t-f7cc6388e73a1500e47cf69dfb5f33ca252b7f919e924a2bf0db75e39349e3853
container_end_page 471
container_issue
container_start_page 458
container_title Acta biomaterialia
container_volume 119
creator Paknahad, Ali
Goudarzi, Mohsen
Kucko, Nathan W.
Leeuwenburgh, Sander C.G.
Sluys, Lambertus J.
description Calcium phosphate cements (CPCs) have been widely used during the past decades as biocompatible bone substitution in maxillofacial, oral and orthopedic surgery. CPCs are injectable and are chemically resemblant to the mineral phase of native bone. Nevertheless, their low fracture toughness and high brittleness reduce their clinical applicability to weakly loaded bones. Reinforcement of CPC matrix with polymeric fibers can overcome these mechanical drawbacks and significantly enhance their toughness and strength. Such fiber-reinforced calcium phosphate cements (FRCPCs) have the potential to act as advanced bone substitute in load-bearing anatomical sites. This work achieves integrated experimental and numerical characterization of the mechanical properties of FRCPCs under bending and tensile loading. To this end, a 3-D numerical gradient enhanced damage model combined with a dimensionally-reduced fiber model are employed to develop a computational model for material characterization and to simulate the failure process of fiber-reinforced CPC matrix based on experimental data. In addition, an advanced interfacial constitutive law, derived from micromechanical pull-out tests, is used to represent the interaction between the polymeric fiber and CPC matrix. The presented computational model is successfully validated with the experimental results and offers a firm basis for further investigations on the development of numerical and experimental analysis of fiber-reinforced bone cements.
doi_str_mv 10.1016/j.actbio.2020.10.014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2458960074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706120306036</els_id><sourcerecordid>2486865878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-f7cc6388e73a1500e47cf69dfb5f33ca252b7f919e924a2bf0db75e39349e3853</originalsourceid><addsrcrecordid>eNp9kU2P1SAYhYnROOPoPzCGxM246JWvAnVhMrkZP5JJ3OiaUPqSyw0tFdrR---H5o4uXLgCTp7zAucg9JqSHSVUvj_urFv6kHaMsE3aESqeoEuqlW5UK_XTuleCNYpIeoFelHIkhGvK9HN0wTmVQtPuEi17G11YRzwfUpkPdgHsYIRpwRnC5FN2MOBfYTngOcUTvr4P0yni6kmHFN9hH3rI5QO-mTD8niGHzWorMA14WscquHryNsQ1Q1VtPJVQXqJn3sYCrx7XK_Tj0-33_Zfm7tvnr_ubu8YJLpfGK-ck1xoUt7QlBIRyXnaD71vPubOsZb3yHe2gY8Ky3pOhVy3wjosOuG75Fbo-z51z-rlCWcwYioMY7QRpLYaJVneSECUq-vYf9JjWXN-7UVpq2dZcKyXOlMuplAzezPXLNp8MJWZrxRzNuRWztbKptZVqe_M4fO1HGP6a_tRQgY9nAGoa9wGyKS7AVLMPGdxihhT-f8MDlsmgiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486865878</pqid></control><display><type>article</type><title>Calcium phosphate cement reinforced with poly (vinyl alcohol) fibers: An experimental and numerical failure analysis</title><source>ScienceDirect Journals</source><creator>Paknahad, Ali ; Goudarzi, Mohsen ; Kucko, Nathan W. ; Leeuwenburgh, Sander C.G. ; Sluys, Lambertus J.</creator><creatorcontrib>Paknahad, Ali ; Goudarzi, Mohsen ; Kucko, Nathan W. ; Leeuwenburgh, Sander C.G. ; Sluys, Lambertus J.</creatorcontrib><description>Calcium phosphate cements (CPCs) have been widely used during the past decades as biocompatible bone substitution in maxillofacial, oral and orthopedic surgery. CPCs are injectable and are chemically resemblant to the mineral phase of native bone. Nevertheless, their low fracture toughness and high brittleness reduce their clinical applicability to weakly loaded bones. Reinforcement of CPC matrix with polymeric fibers can overcome these mechanical drawbacks and significantly enhance their toughness and strength. Such fiber-reinforced calcium phosphate cements (FRCPCs) have the potential to act as advanced bone substitute in load-bearing anatomical sites. This work achieves integrated experimental and numerical characterization of the mechanical properties of FRCPCs under bending and tensile loading. To this end, a 3-D numerical gradient enhanced damage model combined with a dimensionally-reduced fiber model are employed to develop a computational model for material characterization and to simulate the failure process of fiber-reinforced CPC matrix based on experimental data. In addition, an advanced interfacial constitutive law, derived from micromechanical pull-out tests, is used to represent the interaction between the polymeric fiber and CPC matrix. The presented computational model is successfully validated with the experimental results and offers a firm basis for further investigations on the development of numerical and experimental analysis of fiber-reinforced bone cements.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.10.014</identifier><identifier>PMID: 33164819</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biocompatibility ; Biomedical materials ; Bone Cements ; Bone Substitutes ; Bone surgery ; Calcium ; Calcium Phosphates ; Cement reinforcements ; Computer applications ; Damage assessment ; Failure analysis ; Fiber reinforced materials ; Fiber-reinforced calcium phosphate cements ; Fibers ; Fracture toughness ; Loading ; Materials Testing ; Mathematical models ; Maxillofacial ; Mechanical properties ; Numerical modeling ; Orthopedics ; Polyvinyl Alcohol ; Pull out tests ; Substitute bone ; Surgical implants ; Tensile test ; Three dimensional models ; Three-point bending test</subject><ispartof>Acta biomaterialia, 2021-01, Vol.119, p.458-471</ispartof><rights>2020 Acta Materialia Inc.</rights><rights>Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Jan 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-f7cc6388e73a1500e47cf69dfb5f33ca252b7f919e924a2bf0db75e39349e3853</citedby><cites>FETCH-LOGICAL-c436t-f7cc6388e73a1500e47cf69dfb5f33ca252b7f919e924a2bf0db75e39349e3853</cites><orcidid>0000-0002-4904-8238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33164819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paknahad, Ali</creatorcontrib><creatorcontrib>Goudarzi, Mohsen</creatorcontrib><creatorcontrib>Kucko, Nathan W.</creatorcontrib><creatorcontrib>Leeuwenburgh, Sander C.G.</creatorcontrib><creatorcontrib>Sluys, Lambertus J.</creatorcontrib><title>Calcium phosphate cement reinforced with poly (vinyl alcohol) fibers: An experimental and numerical failure analysis</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Calcium phosphate cements (CPCs) have been widely used during the past decades as biocompatible bone substitution in maxillofacial, oral and orthopedic surgery. CPCs are injectable and are chemically resemblant to the mineral phase of native bone. Nevertheless, their low fracture toughness and high brittleness reduce their clinical applicability to weakly loaded bones. Reinforcement of CPC matrix with polymeric fibers can overcome these mechanical drawbacks and significantly enhance their toughness and strength. Such fiber-reinforced calcium phosphate cements (FRCPCs) have the potential to act as advanced bone substitute in load-bearing anatomical sites. This work achieves integrated experimental and numerical characterization of the mechanical properties of FRCPCs under bending and tensile loading. To this end, a 3-D numerical gradient enhanced damage model combined with a dimensionally-reduced fiber model are employed to develop a computational model for material characterization and to simulate the failure process of fiber-reinforced CPC matrix based on experimental data. In addition, an advanced interfacial constitutive law, derived from micromechanical pull-out tests, is used to represent the interaction between the polymeric fiber and CPC matrix. The presented computational model is successfully validated with the experimental results and offers a firm basis for further investigations on the development of numerical and experimental analysis of fiber-reinforced bone cements.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone Cements</subject><subject>Bone Substitutes</subject><subject>Bone surgery</subject><subject>Calcium</subject><subject>Calcium Phosphates</subject><subject>Cement reinforcements</subject><subject>Computer applications</subject><subject>Damage assessment</subject><subject>Failure analysis</subject><subject>Fiber reinforced materials</subject><subject>Fiber-reinforced calcium phosphate cements</subject><subject>Fibers</subject><subject>Fracture toughness</subject><subject>Loading</subject><subject>Materials Testing</subject><subject>Mathematical models</subject><subject>Maxillofacial</subject><subject>Mechanical properties</subject><subject>Numerical modeling</subject><subject>Orthopedics</subject><subject>Polyvinyl Alcohol</subject><subject>Pull out tests</subject><subject>Substitute bone</subject><subject>Surgical implants</subject><subject>Tensile test</subject><subject>Three dimensional models</subject><subject>Three-point bending test</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU2P1SAYhYnROOPoPzCGxM246JWvAnVhMrkZP5JJ3OiaUPqSyw0tFdrR---H5o4uXLgCTp7zAucg9JqSHSVUvj_urFv6kHaMsE3aESqeoEuqlW5UK_XTuleCNYpIeoFelHIkhGvK9HN0wTmVQtPuEi17G11YRzwfUpkPdgHsYIRpwRnC5FN2MOBfYTngOcUTvr4P0yni6kmHFN9hH3rI5QO-mTD8niGHzWorMA14WscquHryNsQ1Q1VtPJVQXqJn3sYCrx7XK_Tj0-33_Zfm7tvnr_ubu8YJLpfGK-ck1xoUt7QlBIRyXnaD71vPubOsZb3yHe2gY8Ky3pOhVy3wjosOuG75Fbo-z51z-rlCWcwYioMY7QRpLYaJVneSECUq-vYf9JjWXN-7UVpq2dZcKyXOlMuplAzezPXLNp8MJWZrxRzNuRWztbKptZVqe_M4fO1HGP6a_tRQgY9nAGoa9wGyKS7AVLMPGdxihhT-f8MDlsmgiw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Paknahad, Ali</creator><creator>Goudarzi, Mohsen</creator><creator>Kucko, Nathan W.</creator><creator>Leeuwenburgh, Sander C.G.</creator><creator>Sluys, Lambertus J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4904-8238</orcidid></search><sort><creationdate>20210101</creationdate><title>Calcium phosphate cement reinforced with poly (vinyl alcohol) fibers: An experimental and numerical failure analysis</title><author>Paknahad, Ali ; Goudarzi, Mohsen ; Kucko, Nathan W. ; Leeuwenburgh, Sander C.G. ; Sluys, Lambertus J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-f7cc6388e73a1500e47cf69dfb5f33ca252b7f919e924a2bf0db75e39349e3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone Cements</topic><topic>Bone Substitutes</topic><topic>Bone surgery</topic><topic>Calcium</topic><topic>Calcium Phosphates</topic><topic>Cement reinforcements</topic><topic>Computer applications</topic><topic>Damage assessment</topic><topic>Failure analysis</topic><topic>Fiber reinforced materials</topic><topic>Fiber-reinforced calcium phosphate cements</topic><topic>Fibers</topic><topic>Fracture toughness</topic><topic>Loading</topic><topic>Materials Testing</topic><topic>Mathematical models</topic><topic>Maxillofacial</topic><topic>Mechanical properties</topic><topic>Numerical modeling</topic><topic>Orthopedics</topic><topic>Polyvinyl Alcohol</topic><topic>Pull out tests</topic><topic>Substitute bone</topic><topic>Surgical implants</topic><topic>Tensile test</topic><topic>Three dimensional models</topic><topic>Three-point bending test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paknahad, Ali</creatorcontrib><creatorcontrib>Goudarzi, Mohsen</creatorcontrib><creatorcontrib>Kucko, Nathan W.</creatorcontrib><creatorcontrib>Leeuwenburgh, Sander C.G.</creatorcontrib><creatorcontrib>Sluys, Lambertus J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paknahad, Ali</au><au>Goudarzi, Mohsen</au><au>Kucko, Nathan W.</au><au>Leeuwenburgh, Sander C.G.</au><au>Sluys, Lambertus J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium phosphate cement reinforced with poly (vinyl alcohol) fibers: An experimental and numerical failure analysis</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>119</volume><spage>458</spage><epage>471</epage><pages>458-471</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Calcium phosphate cements (CPCs) have been widely used during the past decades as biocompatible bone substitution in maxillofacial, oral and orthopedic surgery. CPCs are injectable and are chemically resemblant to the mineral phase of native bone. Nevertheless, their low fracture toughness and high brittleness reduce their clinical applicability to weakly loaded bones. Reinforcement of CPC matrix with polymeric fibers can overcome these mechanical drawbacks and significantly enhance their toughness and strength. Such fiber-reinforced calcium phosphate cements (FRCPCs) have the potential to act as advanced bone substitute in load-bearing anatomical sites. This work achieves integrated experimental and numerical characterization of the mechanical properties of FRCPCs under bending and tensile loading. To this end, a 3-D numerical gradient enhanced damage model combined with a dimensionally-reduced fiber model are employed to develop a computational model for material characterization and to simulate the failure process of fiber-reinforced CPC matrix based on experimental data. In addition, an advanced interfacial constitutive law, derived from micromechanical pull-out tests, is used to represent the interaction between the polymeric fiber and CPC matrix. The presented computational model is successfully validated with the experimental results and offers a firm basis for further investigations on the development of numerical and experimental analysis of fiber-reinforced bone cements.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33164819</pmid><doi>10.1016/j.actbio.2020.10.014</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4904-8238</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2021-01, Vol.119, p.458-471
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_2458960074
source ScienceDirect Journals
subjects Biocompatibility
Biomedical materials
Bone Cements
Bone Substitutes
Bone surgery
Calcium
Calcium Phosphates
Cement reinforcements
Computer applications
Damage assessment
Failure analysis
Fiber reinforced materials
Fiber-reinforced calcium phosphate cements
Fibers
Fracture toughness
Loading
Materials Testing
Mathematical models
Maxillofacial
Mechanical properties
Numerical modeling
Orthopedics
Polyvinyl Alcohol
Pull out tests
Substitute bone
Surgical implants
Tensile test
Three dimensional models
Three-point bending test
title Calcium phosphate cement reinforced with poly (vinyl alcohol) fibers: An experimental and numerical failure analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T12%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium%20phosphate%20cement%20reinforced%20with%20poly%20(vinyl%20alcohol)%20fibers:%20An%20experimental%20and%20numerical%20failure%20analysis&rft.jtitle=Acta%20biomaterialia&rft.au=Paknahad,%20Ali&rft.date=2021-01-01&rft.volume=119&rft.spage=458&rft.epage=471&rft.pages=458-471&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.10.014&rft_dat=%3Cproquest_cross%3E2486865878%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-f7cc6388e73a1500e47cf69dfb5f33ca252b7f919e924a2bf0db75e39349e3853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486865878&rft_id=info:pmid/33164819&rfr_iscdi=true