Loading…

An Acoustic Meta‐Skin Insulator

Acoustic metamaterials with artificial microstructures are attractive to realize intriguing functions, including efficient waveguiding, which requires large impedance mismatches to realize total side reflection with negligible transmission and absorption. While large impedance mismatch can be readil...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2020-09, Vol.32 (37), p.e2002251-n/a
Main Authors: Tong, Lei, Xiong, Zhu, Shen, Ya‐Xi, Peng, Yu‐Gui, Huang, Xin‐Yu, Ye, Lei, Tang, Ming, Cai, Fei‐Yan, Zheng, Hai‐Rong, Xu, Jian‐Bin, Cheng, Gary J., Zhu, Xue‐Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3501-3adbe9c7283a82404c1d33654fe5781f6e444effd8c7f764023349062bb20b043
cites cdi_FETCH-LOGICAL-c3501-3adbe9c7283a82404c1d33654fe5781f6e444effd8c7f764023349062bb20b043
container_end_page n/a
container_issue 37
container_start_page e2002251
container_title Advanced materials (Weinheim)
container_volume 32
creator Tong, Lei
Xiong, Zhu
Shen, Ya‐Xi
Peng, Yu‐Gui
Huang, Xin‐Yu
Ye, Lei
Tang, Ming
Cai, Fei‐Yan
Zheng, Hai‐Rong
Xu, Jian‐Bin
Cheng, Gary J.
Zhu, Xue‐Feng
description Acoustic metamaterials with artificial microstructures are attractive to realize intriguing functions, including efficient waveguiding, which requires large impedance mismatches to realize total side reflection with negligible transmission and absorption. While large impedance mismatch can be readily realized in an air environment, acoustic waveguiding in an underwater environment remains elusive due to insufficient impedance mismatch of state‐of‐the‐art metamaterials. Here, a superhydrophobic acoustic metasurface of microstructured poly(vinylidene fluoride) membrane, referred to as a “meta‐skin” insulator, which is able to confine acoustic waves in an all‐angle and wide spectrum range due to tremendous impedance mismatch at stable air/water interfaces, viz., the Cassie–Baxter state is demonstrated. By utilizing the meta‐skin insulator with broadband and high throughput, orbital‐angular‐momentum multiplexing at a high spectral efficiency and binary coding along large‐angle bending channels for bit‐error‐free acoustic data transmission in an underwater environment are demonstrated. Very different from optical and/or electrical cable communications, acoustic waves can be simply and effectively coupled into remote meta‐skin acoustic fibers from free space, which is technologically significant for long‐haul and anti‐interference communication. This work can enlighten many fluidic applications based on efficient waveguiding, such as in vivo ultrasound medical treatment and imaging. Underwater acoustic wave confinement in an all‐angle and wide spectrum range can be realized in a meta‐skin insulator due to the tremendous impedance mismatch originating from the stable Cassie–Baxter state. Acoustic‐wave‐based underwater orbital‐angular‐momentum multiplexing and binary coding are implemented, which is promising for long‐haul and anti‐interference communication. This work also benefits in vivo ultrasound medical treatment and imaging.
doi_str_mv 10.1002/adma.202002251
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2426176631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426176631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3501-3adbe9c7283a82404c1d33654fe5781f6e444effd8c7f764023349062bb20b043</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMhexsKRc_8djVP4qFTEAs-U4tpSSJsVOhLrxCDwjT4KrIpBYmO4dvu_o6CB0imGKAcilqVZmSoCkn3C8h0aYE5wxUHwfjUBRninB8kN0FOMSAJQAMUJnRTspbDfEvraTe9ebz_ePx5e6nczbODSm78IxOvCmie7k-47R88310-wuWzzczmfFIrOUA86oqUqnrCQ5NTlhwCyuKBWcecdljr1wjDHnfZVb6aVgQChlCgQpSwIlMDpGF7vcdeheBxd7vaqjdU1jWpf6acKIwFIIihN6_gdddkNoU7tEMcJzyZRM1HRH2dDFGJzX61CvTNhoDHq7mN4upn8WS4LaCW914zb_0Lq4ui9-3S_iLWye</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442587497</pqid></control><display><type>article</type><title>An Acoustic Meta‐Skin Insulator</title><source>Wiley</source><creator>Tong, Lei ; Xiong, Zhu ; Shen, Ya‐Xi ; Peng, Yu‐Gui ; Huang, Xin‐Yu ; Ye, Lei ; Tang, Ming ; Cai, Fei‐Yan ; Zheng, Hai‐Rong ; Xu, Jian‐Bin ; Cheng, Gary J. ; Zhu, Xue‐Feng</creator><creatorcontrib>Tong, Lei ; Xiong, Zhu ; Shen, Ya‐Xi ; Peng, Yu‐Gui ; Huang, Xin‐Yu ; Ye, Lei ; Tang, Ming ; Cai, Fei‐Yan ; Zheng, Hai‐Rong ; Xu, Jian‐Bin ; Cheng, Gary J. ; Zhu, Xue‐Feng</creatorcontrib><description>Acoustic metamaterials with artificial microstructures are attractive to realize intriguing functions, including efficient waveguiding, which requires large impedance mismatches to realize total side reflection with negligible transmission and absorption. While large impedance mismatch can be readily realized in an air environment, acoustic waveguiding in an underwater environment remains elusive due to insufficient impedance mismatch of state‐of‐the‐art metamaterials. Here, a superhydrophobic acoustic metasurface of microstructured poly(vinylidene fluoride) membrane, referred to as a “meta‐skin” insulator, which is able to confine acoustic waves in an all‐angle and wide spectrum range due to tremendous impedance mismatch at stable air/water interfaces, viz., the Cassie–Baxter state is demonstrated. By utilizing the meta‐skin insulator with broadband and high throughput, orbital‐angular‐momentum multiplexing at a high spectral efficiency and binary coding along large‐angle bending channels for bit‐error‐free acoustic data transmission in an underwater environment are demonstrated. Very different from optical and/or electrical cable communications, acoustic waves can be simply and effectively coupled into remote meta‐skin acoustic fibers from free space, which is technologically significant for long‐haul and anti‐interference communication. This work can enlighten many fluidic applications based on efficient waveguiding, such as in vivo ultrasound medical treatment and imaging. Underwater acoustic wave confinement in an all‐angle and wide spectrum range can be realized in a meta‐skin insulator due to the tremendous impedance mismatch originating from the stable Cassie–Baxter state. Acoustic‐wave‐based underwater orbital‐angular‐momentum multiplexing and binary coding are implemented, which is promising for long‐haul and anti‐interference communication. This work also benefits in vivo ultrasound medical treatment and imaging.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202002251</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acoustic coupling ; Acoustic impedance ; Acoustic insulation ; acoustic metasurfaces ; Acoustic waves ; Acoustics ; Angular momentum ; Binary codes ; Broadband ; Communication cables ; Data transmission ; Electric cables ; Hydrophobicity ; Materials science ; Metamaterials ; Multiplexing ; Polyvinylidene fluorides ; superhydrophobicity ; underwater acoustic waveguiding ; Underwater acoustics ; Vinylidene fluoride</subject><ispartof>Advanced materials (Weinheim), 2020-09, Vol.32 (37), p.e2002251-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3501-3adbe9c7283a82404c1d33654fe5781f6e444effd8c7f764023349062bb20b043</citedby><cites>FETCH-LOGICAL-c3501-3adbe9c7283a82404c1d33654fe5781f6e444effd8c7f764023349062bb20b043</cites><orcidid>0000-0002-1308-0834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202002251$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202002251$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids></links><search><creatorcontrib>Tong, Lei</creatorcontrib><creatorcontrib>Xiong, Zhu</creatorcontrib><creatorcontrib>Shen, Ya‐Xi</creatorcontrib><creatorcontrib>Peng, Yu‐Gui</creatorcontrib><creatorcontrib>Huang, Xin‐Yu</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Tang, Ming</creatorcontrib><creatorcontrib>Cai, Fei‐Yan</creatorcontrib><creatorcontrib>Zheng, Hai‐Rong</creatorcontrib><creatorcontrib>Xu, Jian‐Bin</creatorcontrib><creatorcontrib>Cheng, Gary J.</creatorcontrib><creatorcontrib>Zhu, Xue‐Feng</creatorcontrib><title>An Acoustic Meta‐Skin Insulator</title><title>Advanced materials (Weinheim)</title><description>Acoustic metamaterials with artificial microstructures are attractive to realize intriguing functions, including efficient waveguiding, which requires large impedance mismatches to realize total side reflection with negligible transmission and absorption. While large impedance mismatch can be readily realized in an air environment, acoustic waveguiding in an underwater environment remains elusive due to insufficient impedance mismatch of state‐of‐the‐art metamaterials. Here, a superhydrophobic acoustic metasurface of microstructured poly(vinylidene fluoride) membrane, referred to as a “meta‐skin” insulator, which is able to confine acoustic waves in an all‐angle and wide spectrum range due to tremendous impedance mismatch at stable air/water interfaces, viz., the Cassie–Baxter state is demonstrated. By utilizing the meta‐skin insulator with broadband and high throughput, orbital‐angular‐momentum multiplexing at a high spectral efficiency and binary coding along large‐angle bending channels for bit‐error‐free acoustic data transmission in an underwater environment are demonstrated. Very different from optical and/or electrical cable communications, acoustic waves can be simply and effectively coupled into remote meta‐skin acoustic fibers from free space, which is technologically significant for long‐haul and anti‐interference communication. This work can enlighten many fluidic applications based on efficient waveguiding, such as in vivo ultrasound medical treatment and imaging. Underwater acoustic wave confinement in an all‐angle and wide spectrum range can be realized in a meta‐skin insulator due to the tremendous impedance mismatch originating from the stable Cassie–Baxter state. Acoustic‐wave‐based underwater orbital‐angular‐momentum multiplexing and binary coding are implemented, which is promising for long‐haul and anti‐interference communication. This work also benefits in vivo ultrasound medical treatment and imaging.</description><subject>Acoustic coupling</subject><subject>Acoustic impedance</subject><subject>Acoustic insulation</subject><subject>acoustic metasurfaces</subject><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Angular momentum</subject><subject>Binary codes</subject><subject>Broadband</subject><subject>Communication cables</subject><subject>Data transmission</subject><subject>Electric cables</subject><subject>Hydrophobicity</subject><subject>Materials science</subject><subject>Metamaterials</subject><subject>Multiplexing</subject><subject>Polyvinylidene fluorides</subject><subject>superhydrophobicity</subject><subject>underwater acoustic waveguiding</subject><subject>Underwater acoustics</subject><subject>Vinylidene fluoride</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqWwMhexsKRc_8djVP4qFTEAs-U4tpSSJsVOhLrxCDwjT4KrIpBYmO4dvu_o6CB0imGKAcilqVZmSoCkn3C8h0aYE5wxUHwfjUBRninB8kN0FOMSAJQAMUJnRTspbDfEvraTe9ebz_ePx5e6nczbODSm78IxOvCmie7k-47R88310-wuWzzczmfFIrOUA86oqUqnrCQ5NTlhwCyuKBWcecdljr1wjDHnfZVb6aVgQChlCgQpSwIlMDpGF7vcdeheBxd7vaqjdU1jWpf6acKIwFIIihN6_gdddkNoU7tEMcJzyZRM1HRH2dDFGJzX61CvTNhoDHq7mN4upn8WS4LaCW914zb_0Lq4ui9-3S_iLWye</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Tong, Lei</creator><creator>Xiong, Zhu</creator><creator>Shen, Ya‐Xi</creator><creator>Peng, Yu‐Gui</creator><creator>Huang, Xin‐Yu</creator><creator>Ye, Lei</creator><creator>Tang, Ming</creator><creator>Cai, Fei‐Yan</creator><creator>Zheng, Hai‐Rong</creator><creator>Xu, Jian‐Bin</creator><creator>Cheng, Gary J.</creator><creator>Zhu, Xue‐Feng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1308-0834</orcidid></search><sort><creationdate>20200901</creationdate><title>An Acoustic Meta‐Skin Insulator</title><author>Tong, Lei ; Xiong, Zhu ; Shen, Ya‐Xi ; Peng, Yu‐Gui ; Huang, Xin‐Yu ; Ye, Lei ; Tang, Ming ; Cai, Fei‐Yan ; Zheng, Hai‐Rong ; Xu, Jian‐Bin ; Cheng, Gary J. ; Zhu, Xue‐Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3501-3adbe9c7283a82404c1d33654fe5781f6e444effd8c7f764023349062bb20b043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic coupling</topic><topic>Acoustic impedance</topic><topic>Acoustic insulation</topic><topic>acoustic metasurfaces</topic><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Angular momentum</topic><topic>Binary codes</topic><topic>Broadband</topic><topic>Communication cables</topic><topic>Data transmission</topic><topic>Electric cables</topic><topic>Hydrophobicity</topic><topic>Materials science</topic><topic>Metamaterials</topic><topic>Multiplexing</topic><topic>Polyvinylidene fluorides</topic><topic>superhydrophobicity</topic><topic>underwater acoustic waveguiding</topic><topic>Underwater acoustics</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Lei</creatorcontrib><creatorcontrib>Xiong, Zhu</creatorcontrib><creatorcontrib>Shen, Ya‐Xi</creatorcontrib><creatorcontrib>Peng, Yu‐Gui</creatorcontrib><creatorcontrib>Huang, Xin‐Yu</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Tang, Ming</creatorcontrib><creatorcontrib>Cai, Fei‐Yan</creatorcontrib><creatorcontrib>Zheng, Hai‐Rong</creatorcontrib><creatorcontrib>Xu, Jian‐Bin</creatorcontrib><creatorcontrib>Cheng, Gary J.</creatorcontrib><creatorcontrib>Zhu, Xue‐Feng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Lei</au><au>Xiong, Zhu</au><au>Shen, Ya‐Xi</au><au>Peng, Yu‐Gui</au><au>Huang, Xin‐Yu</au><au>Ye, Lei</au><au>Tang, Ming</au><au>Cai, Fei‐Yan</au><au>Zheng, Hai‐Rong</au><au>Xu, Jian‐Bin</au><au>Cheng, Gary J.</au><au>Zhu, Xue‐Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Acoustic Meta‐Skin Insulator</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>32</volume><issue>37</issue><spage>e2002251</spage><epage>n/a</epage><pages>e2002251-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Acoustic metamaterials with artificial microstructures are attractive to realize intriguing functions, including efficient waveguiding, which requires large impedance mismatches to realize total side reflection with negligible transmission and absorption. While large impedance mismatch can be readily realized in an air environment, acoustic waveguiding in an underwater environment remains elusive due to insufficient impedance mismatch of state‐of‐the‐art metamaterials. Here, a superhydrophobic acoustic metasurface of microstructured poly(vinylidene fluoride) membrane, referred to as a “meta‐skin” insulator, which is able to confine acoustic waves in an all‐angle and wide spectrum range due to tremendous impedance mismatch at stable air/water interfaces, viz., the Cassie–Baxter state is demonstrated. By utilizing the meta‐skin insulator with broadband and high throughput, orbital‐angular‐momentum multiplexing at a high spectral efficiency and binary coding along large‐angle bending channels for bit‐error‐free acoustic data transmission in an underwater environment are demonstrated. Very different from optical and/or electrical cable communications, acoustic waves can be simply and effectively coupled into remote meta‐skin acoustic fibers from free space, which is technologically significant for long‐haul and anti‐interference communication. This work can enlighten many fluidic applications based on efficient waveguiding, such as in vivo ultrasound medical treatment and imaging. Underwater acoustic wave confinement in an all‐angle and wide spectrum range can be realized in a meta‐skin insulator due to the tremendous impedance mismatch originating from the stable Cassie–Baxter state. Acoustic‐wave‐based underwater orbital‐angular‐momentum multiplexing and binary coding are implemented, which is promising for long‐haul and anti‐interference communication. This work also benefits in vivo ultrasound medical treatment and imaging.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202002251</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1308-0834</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-09, Vol.32 (37), p.e2002251-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2426176631
source Wiley
subjects Acoustic coupling
Acoustic impedance
Acoustic insulation
acoustic metasurfaces
Acoustic waves
Acoustics
Angular momentum
Binary codes
Broadband
Communication cables
Data transmission
Electric cables
Hydrophobicity
Materials science
Metamaterials
Multiplexing
Polyvinylidene fluorides
superhydrophobicity
underwater acoustic waveguiding
Underwater acoustics
Vinylidene fluoride
title An Acoustic Meta‐Skin Insulator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T04%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Acoustic%20Meta%E2%80%90Skin%20Insulator&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Tong,%20Lei&rft.date=2020-09-01&rft.volume=32&rft.issue=37&rft.spage=e2002251&rft.epage=n/a&rft.pages=e2002251-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202002251&rft_dat=%3Cproquest_cross%3E2426176631%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3501-3adbe9c7283a82404c1d33654fe5781f6e444effd8c7f764023349062bb20b043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442587497&rft_id=info:pmid/&rfr_iscdi=true