Loading…

Ion transport across solid-state ion channels perturbed by directed strain

We combine quantum-chemical calculations and molecular dynamics simulations to consider aqueous ion flow across non-axisymmetric nanopores in monolayer graphene and MoS 2 . When the pore-containing membrane is subject to uniaxial tensile strains applied in various directions, the corresponding perme...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2020-05, Vol.12 (18), p.1328-1334
Main Authors: Smolyanitsky, A, Fang, A, Kazakov, A. F, Paulechka, E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-c58ba6e4b5e8ffe6b4a632b87d6e75c9e702a12db2911b8348b0972ce8c260da3
cites cdi_FETCH-LOGICAL-c363t-c58ba6e4b5e8ffe6b4a632b87d6e75c9e702a12db2911b8348b0972ce8c260da3
container_end_page 1334
container_issue 18
container_start_page 1328
container_title Nanoscale
container_volume 12
creator Smolyanitsky, A
Fang, A
Kazakov, A. F
Paulechka, E
description We combine quantum-chemical calculations and molecular dynamics simulations to consider aqueous ion flow across non-axisymmetric nanopores in monolayer graphene and MoS 2 . When the pore-containing membrane is subject to uniaxial tensile strains applied in various directions, the corresponding permeability exhibits considerable directional dependence. This anisotropy is shown to arise from directed perturbations of the local electrostatics by the corresponding pore deformation, as enabled by the pore edge geometries and atomic compositions. By considering nanopores with ionic permeability that depends on the strain direction, we present model systems that may yield a detailed understanding of the structure-function relationship in solid-state and biological ion channels. Specifically, the observed anisotropic effects potentially enable the use of permeation measurements across strained membranes to obtain directional profiles of ion-pore energetics as contributed by groups of atoms or even individual atoms at the pore edge. The resulting insight may facilitate the development of subnanoscale pores with novel functionalities arising from locally asymmetric pore edge features. Using computer simulations, we demonstrate ion permeation measurements across strained membranes that may potentially be used to obtain directional profiles of ion-pore energetics as contributed by the pore edge atoms.
doi_str_mv 10.1039/d0nr01858a
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2398631107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402501236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c58ba6e4b5e8ffe6b4a632b87d6e75c9e702a12db2911b8348b0972ce8c260da3</originalsourceid><addsrcrecordid>eNp9kctLw0AQxhdRrK-LdyXiRYTo7G6y2RxLfVWKgug57GOCkTSJu8mh_71rWyt48DQD349vZr4h5JjCFQWeX1toHFCZSrVF9hgkEHOese1NL5IR2ff-A0DkXPBdMuKMiwxktkcep20T9U41vmtdHynjWu8j39aVjX2veoyqAJh31TRY-6hD1w9Oo430IrKVQ9OH3geDqjkkO6WqPR6t6wF5u7t9nTzEs-f76WQ8i00Y3scmlVoJTHSKsixR6EQJzrTMrMAsNTlmwBRlVrOcUi15IjXkGTMoDRNgFT8gFyvfzrWfA_q-mFfeYF2rBtvBF4znUnBKIQvo-R_0ox1cE7YrWAIsBRqCCNTliloe77AsOlfNlVsUFIrvhIsbeHpZJjwO8OnactBztBv0J9IAnKwA581G_X1R0M_-04vOlvwLqOeLHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402501236</pqid></control><display><type>article</type><title>Ion transport across solid-state ion channels perturbed by directed strain</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Smolyanitsky, A ; Fang, A ; Kazakov, A. F ; Paulechka, E</creator><creatorcontrib>Smolyanitsky, A ; Fang, A ; Kazakov, A. F ; Paulechka, E</creatorcontrib><description>We combine quantum-chemical calculations and molecular dynamics simulations to consider aqueous ion flow across non-axisymmetric nanopores in monolayer graphene and MoS 2 . When the pore-containing membrane is subject to uniaxial tensile strains applied in various directions, the corresponding permeability exhibits considerable directional dependence. This anisotropy is shown to arise from directed perturbations of the local electrostatics by the corresponding pore deformation, as enabled by the pore edge geometries and atomic compositions. By considering nanopores with ionic permeability that depends on the strain direction, we present model systems that may yield a detailed understanding of the structure-function relationship in solid-state and biological ion channels. Specifically, the observed anisotropic effects potentially enable the use of permeation measurements across strained membranes to obtain directional profiles of ion-pore energetics as contributed by groups of atoms or even individual atoms at the pore edge. The resulting insight may facilitate the development of subnanoscale pores with novel functionalities arising from locally asymmetric pore edge features. Using computer simulations, we demonstrate ion permeation measurements across strained membranes that may potentially be used to obtain directional profiles of ion-pore energetics as contributed by the pore edge atoms.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr01858a</identifier><identifier>PMID: 32367087</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anisotropy ; Axisymmetric flow ; Computer simulation ; Electrostatics ; Graphene ; Ion channels ; Ion transport ; Membranes ; Molecular dynamics ; Permeability ; Porosity ; Quantum chemistry ; Solid state</subject><ispartof>Nanoscale, 2020-05, Vol.12 (18), p.1328-1334</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c58ba6e4b5e8ffe6b4a632b87d6e75c9e702a12db2911b8348b0972ce8c260da3</citedby><cites>FETCH-LOGICAL-c363t-c58ba6e4b5e8ffe6b4a632b87d6e75c9e702a12db2911b8348b0972ce8c260da3</cites><orcidid>0000-0002-4378-8155 ; 0000-0002-8896-9427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32367087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smolyanitsky, A</creatorcontrib><creatorcontrib>Fang, A</creatorcontrib><creatorcontrib>Kazakov, A. F</creatorcontrib><creatorcontrib>Paulechka, E</creatorcontrib><title>Ion transport across solid-state ion channels perturbed by directed strain</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>We combine quantum-chemical calculations and molecular dynamics simulations to consider aqueous ion flow across non-axisymmetric nanopores in monolayer graphene and MoS 2 . When the pore-containing membrane is subject to uniaxial tensile strains applied in various directions, the corresponding permeability exhibits considerable directional dependence. This anisotropy is shown to arise from directed perturbations of the local electrostatics by the corresponding pore deformation, as enabled by the pore edge geometries and atomic compositions. By considering nanopores with ionic permeability that depends on the strain direction, we present model systems that may yield a detailed understanding of the structure-function relationship in solid-state and biological ion channels. Specifically, the observed anisotropic effects potentially enable the use of permeation measurements across strained membranes to obtain directional profiles of ion-pore energetics as contributed by groups of atoms or even individual atoms at the pore edge. The resulting insight may facilitate the development of subnanoscale pores with novel functionalities arising from locally asymmetric pore edge features. Using computer simulations, we demonstrate ion permeation measurements across strained membranes that may potentially be used to obtain directional profiles of ion-pore energetics as contributed by the pore edge atoms.</description><subject>Anisotropy</subject><subject>Axisymmetric flow</subject><subject>Computer simulation</subject><subject>Electrostatics</subject><subject>Graphene</subject><subject>Ion channels</subject><subject>Ion transport</subject><subject>Membranes</subject><subject>Molecular dynamics</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Quantum chemistry</subject><subject>Solid state</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctLw0AQxhdRrK-LdyXiRYTo7G6y2RxLfVWKgug57GOCkTSJu8mh_71rWyt48DQD349vZr4h5JjCFQWeX1toHFCZSrVF9hgkEHOese1NL5IR2ff-A0DkXPBdMuKMiwxktkcep20T9U41vmtdHynjWu8j39aVjX2veoyqAJh31TRY-6hD1w9Oo430IrKVQ9OH3geDqjkkO6WqPR6t6wF5u7t9nTzEs-f76WQ8i00Y3scmlVoJTHSKsixR6EQJzrTMrMAsNTlmwBRlVrOcUi15IjXkGTMoDRNgFT8gFyvfzrWfA_q-mFfeYF2rBtvBF4znUnBKIQvo-R_0ox1cE7YrWAIsBRqCCNTliloe77AsOlfNlVsUFIrvhIsbeHpZJjwO8OnactBztBv0J9IAnKwA581G_X1R0M_-04vOlvwLqOeLHQ</recordid><startdate>20200514</startdate><enddate>20200514</enddate><creator>Smolyanitsky, A</creator><creator>Fang, A</creator><creator>Kazakov, A. F</creator><creator>Paulechka, E</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4378-8155</orcidid><orcidid>https://orcid.org/0000-0002-8896-9427</orcidid></search><sort><creationdate>20200514</creationdate><title>Ion transport across solid-state ion channels perturbed by directed strain</title><author>Smolyanitsky, A ; Fang, A ; Kazakov, A. F ; Paulechka, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c58ba6e4b5e8ffe6b4a632b87d6e75c9e702a12db2911b8348b0972ce8c260da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Axisymmetric flow</topic><topic>Computer simulation</topic><topic>Electrostatics</topic><topic>Graphene</topic><topic>Ion channels</topic><topic>Ion transport</topic><topic>Membranes</topic><topic>Molecular dynamics</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Quantum chemistry</topic><topic>Solid state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smolyanitsky, A</creatorcontrib><creatorcontrib>Fang, A</creatorcontrib><creatorcontrib>Kazakov, A. F</creatorcontrib><creatorcontrib>Paulechka, E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smolyanitsky, A</au><au>Fang, A</au><au>Kazakov, A. F</au><au>Paulechka, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion transport across solid-state ion channels perturbed by directed strain</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2020-05-14</date><risdate>2020</risdate><volume>12</volume><issue>18</issue><spage>1328</spage><epage>1334</epage><pages>1328-1334</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><notes>10.1039/d0nr01858a</notes><notes>Electronic supplementary information (ESI) available. See DOI</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>We combine quantum-chemical calculations and molecular dynamics simulations to consider aqueous ion flow across non-axisymmetric nanopores in monolayer graphene and MoS 2 . When the pore-containing membrane is subject to uniaxial tensile strains applied in various directions, the corresponding permeability exhibits considerable directional dependence. This anisotropy is shown to arise from directed perturbations of the local electrostatics by the corresponding pore deformation, as enabled by the pore edge geometries and atomic compositions. By considering nanopores with ionic permeability that depends on the strain direction, we present model systems that may yield a detailed understanding of the structure-function relationship in solid-state and biological ion channels. Specifically, the observed anisotropic effects potentially enable the use of permeation measurements across strained membranes to obtain directional profiles of ion-pore energetics as contributed by groups of atoms or even individual atoms at the pore edge. The resulting insight may facilitate the development of subnanoscale pores with novel functionalities arising from locally asymmetric pore edge features. Using computer simulations, we demonstrate ion permeation measurements across strained membranes that may potentially be used to obtain directional profiles of ion-pore energetics as contributed by the pore edge atoms.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32367087</pmid><doi>10.1039/d0nr01858a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4378-8155</orcidid><orcidid>https://orcid.org/0000-0002-8896-9427</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-05, Vol.12 (18), p.1328-1334
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2398631107
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Anisotropy
Axisymmetric flow
Computer simulation
Electrostatics
Graphene
Ion channels
Ion transport
Membranes
Molecular dynamics
Permeability
Porosity
Quantum chemistry
Solid state
title Ion transport across solid-state ion channels perturbed by directed strain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T08%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20transport%20across%20solid-state%20ion%20channels%20perturbed%20by%20directed%20strain&rft.jtitle=Nanoscale&rft.au=Smolyanitsky,%20A&rft.date=2020-05-14&rft.volume=12&rft.issue=18&rft.spage=1328&rft.epage=1334&rft.pages=1328-1334&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr01858a&rft_dat=%3Cproquest_rsc_p%3E2402501236%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-c58ba6e4b5e8ffe6b4a632b87d6e75c9e702a12db2911b8348b0972ce8c260da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2402501236&rft_id=info:pmid/32367087&rfr_iscdi=true