Loading…

A zebrafish model of nondystrophic myotonia with sodium channelopathy

•Nondystrophic myotonias are disorders of Na+ and Cl− channels in skeletal muscles.•We generated transgenic zebrafish expressing a human mutant allele of Na+ channels.•The transgenic zebrafish showed electromyographic features of transgenic zebrafish.•The zebrafish displayed swimming behavior sugges...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience letters 2020-01, Vol.714, p.134579-134579, Article 134579
Main Authors: Nam, Tai-Seung, Zhang, Jun, Chandrasekaran, Gopalakrishnan, Jeong, In Young, Li, Wenting, Lee, So-Hyun, Kang, Kyung-Wook, Maeng, Jin-Soo, Kang, Hyuno, Shin, Hee-Young, Park, Hae-Chul, Kim, Sohee, Choi, Seok-Yong, Kim, Myeong-Kyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-45008bd16e94057684d00cac657d2581b576ca90bbb4d569a20320d08a2013c53
cites cdi_FETCH-LOGICAL-c362t-45008bd16e94057684d00cac657d2581b576ca90bbb4d569a20320d08a2013c53
container_end_page 134579
container_issue
container_start_page 134579
container_title Neuroscience letters
container_volume 714
creator Nam, Tai-Seung
Zhang, Jun
Chandrasekaran, Gopalakrishnan
Jeong, In Young
Li, Wenting
Lee, So-Hyun
Kang, Kyung-Wook
Maeng, Jin-Soo
Kang, Hyuno
Shin, Hee-Young
Park, Hae-Chul
Kim, Sohee
Choi, Seok-Yong
Kim, Myeong-Kyu
description •Nondystrophic myotonias are disorders of Na+ and Cl− channels in skeletal muscles.•We generated transgenic zebrafish expressing a human mutant allele of Na+ channels.•The transgenic zebrafish showed electromyographic features of transgenic zebrafish.•The zebrafish displayed swimming behavior suggestive of nondystrophic myotonias.•This zebrafish model is a good vertebrate model of human nondystrophic myotonias. Nondystrophic myotonias are disorders of Na+ (Nav1.4 or SCN4A) and Cl− (CLCN1) channels in skeletal muscles, and frequently show phenotype heterogeneity. The molecular mechanism underlying their pathophysiology and phenotype heterogeneity remains unclear. As zebrafish models have been recently exploited for studies of the pathophysiology and phenotype heterogeneity of various human genetic diseases, a zebrafish model may be useful for delineating nondystrophic myotonias. Here, we generated transgenic zebrafish expressing a human mutant allele of SCN4A, referred to as Tg(mylpfa:N440K), and needle electromyography revealed increased number of myotonic discharges and positive sharp waves in the muscles of Tg(mylpfa:N440K) than in controls. In addition, forced exercise test at a water temperature of 24 °C showed a decrease in the distance moved, time spent in and number of visits to the zone with stronger swimming resistance. Finally, a forced exercise test at a water temperature of 18 °C exhibited a higher number of dive-bombing periods and drifting-down behavior than in controls. These findings indicate that Tg(mylpfa:N440K) is a good vertebrate model of exercise- and cold-induced human nondystrophic myotonias. This zebrafish model may contribute to provide insight into the pathophysiology of myotonia in sodium channelopathy and could be used to explore a new therapeutic avenue.
doi_str_mv 10.1016/j.neulet.2019.134579
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2310721801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304394019306822</els_id><sourcerecordid>2310721801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-45008bd16e94057684d00cac657d2581b576ca90bbb4d569a20320d08a2013c53</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySZlbMd5bJAqVB5SJTawthx7qrhK4mInoPD1pEphyWpGo3vnzhxCriksKdD0brdssa-xWzKgxZLyRGTFCZnTPGNxVmTslMyBQxLzIoEZuQhhBwCCiuSczDhN04JTMSfrVfSNpVdbG6qocQbryG2j1rVmCJ13-8rqqBlc51qroi_bVVFwxvZNpCvVtli7veqq4ZKcbVUd8OpYF-T9cf328BxvXp9eHlabWPOUdXEiAPLS0BTHm0SW5okB0EqnIjNM5LQcZ1oVUJZlYkRaKAacgYF8bCjXgi_I7bR3791Hj6GTjQ0a61q16PogGaeQMZqP6gVJJqn2LgSPW7n3tlF-kBTkAaDcyQmgPACUE8DRdnNM6MsGzZ_pl9gouJ8EOP75adHLoC22Go31qDtpnP0_4QehiYK9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310721801</pqid></control><display><type>article</type><title>A zebrafish model of nondystrophic myotonia with sodium channelopathy</title><source>ScienceDirect Freedom Collection</source><creator>Nam, Tai-Seung ; Zhang, Jun ; Chandrasekaran, Gopalakrishnan ; Jeong, In Young ; Li, Wenting ; Lee, So-Hyun ; Kang, Kyung-Wook ; Maeng, Jin-Soo ; Kang, Hyuno ; Shin, Hee-Young ; Park, Hae-Chul ; Kim, Sohee ; Choi, Seok-Yong ; Kim, Myeong-Kyu</creator><creatorcontrib>Nam, Tai-Seung ; Zhang, Jun ; Chandrasekaran, Gopalakrishnan ; Jeong, In Young ; Li, Wenting ; Lee, So-Hyun ; Kang, Kyung-Wook ; Maeng, Jin-Soo ; Kang, Hyuno ; Shin, Hee-Young ; Park, Hae-Chul ; Kim, Sohee ; Choi, Seok-Yong ; Kim, Myeong-Kyu</creatorcontrib><description>•Nondystrophic myotonias are disorders of Na+ and Cl− channels in skeletal muscles.•We generated transgenic zebrafish expressing a human mutant allele of Na+ channels.•The transgenic zebrafish showed electromyographic features of transgenic zebrafish.•The zebrafish displayed swimming behavior suggestive of nondystrophic myotonias.•This zebrafish model is a good vertebrate model of human nondystrophic myotonias. Nondystrophic myotonias are disorders of Na+ (Nav1.4 or SCN4A) and Cl− (CLCN1) channels in skeletal muscles, and frequently show phenotype heterogeneity. The molecular mechanism underlying their pathophysiology and phenotype heterogeneity remains unclear. As zebrafish models have been recently exploited for studies of the pathophysiology and phenotype heterogeneity of various human genetic diseases, a zebrafish model may be useful for delineating nondystrophic myotonias. Here, we generated transgenic zebrafish expressing a human mutant allele of SCN4A, referred to as Tg(mylpfa:N440K), and needle electromyography revealed increased number of myotonic discharges and positive sharp waves in the muscles of Tg(mylpfa:N440K) than in controls. In addition, forced exercise test at a water temperature of 24 °C showed a decrease in the distance moved, time spent in and number of visits to the zone with stronger swimming resistance. Finally, a forced exercise test at a water temperature of 18 °C exhibited a higher number of dive-bombing periods and drifting-down behavior than in controls. These findings indicate that Tg(mylpfa:N440K) is a good vertebrate model of exercise- and cold-induced human nondystrophic myotonias. This zebrafish model may contribute to provide insight into the pathophysiology of myotonia in sodium channelopathy and could be used to explore a new therapeutic avenue.</description><identifier>ISSN: 0304-3940</identifier><identifier>EISSN: 1872-7972</identifier><identifier>DOI: 10.1016/j.neulet.2019.134579</identifier><identifier>PMID: 31669315</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Animals ; Animals, Genetically Modified ; Cold Temperature ; Disease Models, Animal ; Electromyography ; Hyperkalemic periodic paralysis ; Muscle, Skeletal - physiopathology ; Mutation, Missense ; Myotonia ; Myotonia - genetics ; Myotonia - physiopathology ; Myotonia Congenita - genetics ; Myotonia Congenita - physiopathology ; Myotonic Disorders - genetics ; Myotonic Disorders - physiopathology ; NAV1.4 Voltage-Gated Sodium Channel - genetics ; Paralysis, Hyperkalemic Periodic - genetics ; Paralysis, Hyperkalemic Periodic - physiopathology ; Paramyotonia congenita ; Physical Exertion ; Sodium channel ; Zebrafish</subject><ispartof>Neuroscience letters, 2020-01, Vol.714, p.134579-134579, Article 134579</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-45008bd16e94057684d00cac657d2581b576ca90bbb4d569a20320d08a2013c53</citedby><cites>FETCH-LOGICAL-c362t-45008bd16e94057684d00cac657d2581b576ca90bbb4d569a20320d08a2013c53</cites><orcidid>0000-0001-9032-9907 ; 0000-0001-7193-292X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31669315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nam, Tai-Seung</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Chandrasekaran, Gopalakrishnan</creatorcontrib><creatorcontrib>Jeong, In Young</creatorcontrib><creatorcontrib>Li, Wenting</creatorcontrib><creatorcontrib>Lee, So-Hyun</creatorcontrib><creatorcontrib>Kang, Kyung-Wook</creatorcontrib><creatorcontrib>Maeng, Jin-Soo</creatorcontrib><creatorcontrib>Kang, Hyuno</creatorcontrib><creatorcontrib>Shin, Hee-Young</creatorcontrib><creatorcontrib>Park, Hae-Chul</creatorcontrib><creatorcontrib>Kim, Sohee</creatorcontrib><creatorcontrib>Choi, Seok-Yong</creatorcontrib><creatorcontrib>Kim, Myeong-Kyu</creatorcontrib><title>A zebrafish model of nondystrophic myotonia with sodium channelopathy</title><title>Neuroscience letters</title><addtitle>Neurosci Lett</addtitle><description>•Nondystrophic myotonias are disorders of Na+ and Cl− channels in skeletal muscles.•We generated transgenic zebrafish expressing a human mutant allele of Na+ channels.•The transgenic zebrafish showed electromyographic features of transgenic zebrafish.•The zebrafish displayed swimming behavior suggestive of nondystrophic myotonias.•This zebrafish model is a good vertebrate model of human nondystrophic myotonias. Nondystrophic myotonias are disorders of Na+ (Nav1.4 or SCN4A) and Cl− (CLCN1) channels in skeletal muscles, and frequently show phenotype heterogeneity. The molecular mechanism underlying their pathophysiology and phenotype heterogeneity remains unclear. As zebrafish models have been recently exploited for studies of the pathophysiology and phenotype heterogeneity of various human genetic diseases, a zebrafish model may be useful for delineating nondystrophic myotonias. Here, we generated transgenic zebrafish expressing a human mutant allele of SCN4A, referred to as Tg(mylpfa:N440K), and needle electromyography revealed increased number of myotonic discharges and positive sharp waves in the muscles of Tg(mylpfa:N440K) than in controls. In addition, forced exercise test at a water temperature of 24 °C showed a decrease in the distance moved, time spent in and number of visits to the zone with stronger swimming resistance. Finally, a forced exercise test at a water temperature of 18 °C exhibited a higher number of dive-bombing periods and drifting-down behavior than in controls. These findings indicate that Tg(mylpfa:N440K) is a good vertebrate model of exercise- and cold-induced human nondystrophic myotonias. This zebrafish model may contribute to provide insight into the pathophysiology of myotonia in sodium channelopathy and could be used to explore a new therapeutic avenue.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Cold Temperature</subject><subject>Disease Models, Animal</subject><subject>Electromyography</subject><subject>Hyperkalemic periodic paralysis</subject><subject>Muscle, Skeletal - physiopathology</subject><subject>Mutation, Missense</subject><subject>Myotonia</subject><subject>Myotonia - genetics</subject><subject>Myotonia - physiopathology</subject><subject>Myotonia Congenita - genetics</subject><subject>Myotonia Congenita - physiopathology</subject><subject>Myotonic Disorders - genetics</subject><subject>Myotonic Disorders - physiopathology</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - genetics</subject><subject>Paralysis, Hyperkalemic Periodic - genetics</subject><subject>Paralysis, Hyperkalemic Periodic - physiopathology</subject><subject>Paramyotonia congenita</subject><subject>Physical Exertion</subject><subject>Sodium channel</subject><subject>Zebrafish</subject><issn>0304-3940</issn><issn>1872-7972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySZlbMd5bJAqVB5SJTawthx7qrhK4mInoPD1pEphyWpGo3vnzhxCriksKdD0brdssa-xWzKgxZLyRGTFCZnTPGNxVmTslMyBQxLzIoEZuQhhBwCCiuSczDhN04JTMSfrVfSNpVdbG6qocQbryG2j1rVmCJ13-8rqqBlc51qroi_bVVFwxvZNpCvVtli7veqq4ZKcbVUd8OpYF-T9cf328BxvXp9eHlabWPOUdXEiAPLS0BTHm0SW5okB0EqnIjNM5LQcZ1oVUJZlYkRaKAacgYF8bCjXgi_I7bR3791Hj6GTjQ0a61q16PogGaeQMZqP6gVJJqn2LgSPW7n3tlF-kBTkAaDcyQmgPACUE8DRdnNM6MsGzZ_pl9gouJ8EOP75adHLoC22Go31qDtpnP0_4QehiYK9</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Nam, Tai-Seung</creator><creator>Zhang, Jun</creator><creator>Chandrasekaran, Gopalakrishnan</creator><creator>Jeong, In Young</creator><creator>Li, Wenting</creator><creator>Lee, So-Hyun</creator><creator>Kang, Kyung-Wook</creator><creator>Maeng, Jin-Soo</creator><creator>Kang, Hyuno</creator><creator>Shin, Hee-Young</creator><creator>Park, Hae-Chul</creator><creator>Kim, Sohee</creator><creator>Choi, Seok-Yong</creator><creator>Kim, Myeong-Kyu</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9032-9907</orcidid><orcidid>https://orcid.org/0000-0001-7193-292X</orcidid></search><sort><creationdate>20200101</creationdate><title>A zebrafish model of nondystrophic myotonia with sodium channelopathy</title><author>Nam, Tai-Seung ; Zhang, Jun ; Chandrasekaran, Gopalakrishnan ; Jeong, In Young ; Li, Wenting ; Lee, So-Hyun ; Kang, Kyung-Wook ; Maeng, Jin-Soo ; Kang, Hyuno ; Shin, Hee-Young ; Park, Hae-Chul ; Kim, Sohee ; Choi, Seok-Yong ; Kim, Myeong-Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-45008bd16e94057684d00cac657d2581b576ca90bbb4d569a20320d08a2013c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Cold Temperature</topic><topic>Disease Models, Animal</topic><topic>Electromyography</topic><topic>Hyperkalemic periodic paralysis</topic><topic>Muscle, Skeletal - physiopathology</topic><topic>Mutation, Missense</topic><topic>Myotonia</topic><topic>Myotonia - genetics</topic><topic>Myotonia - physiopathology</topic><topic>Myotonia Congenita - genetics</topic><topic>Myotonia Congenita - physiopathology</topic><topic>Myotonic Disorders - genetics</topic><topic>Myotonic Disorders - physiopathology</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - genetics</topic><topic>Paralysis, Hyperkalemic Periodic - genetics</topic><topic>Paralysis, Hyperkalemic Periodic - physiopathology</topic><topic>Paramyotonia congenita</topic><topic>Physical Exertion</topic><topic>Sodium channel</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Tai-Seung</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Chandrasekaran, Gopalakrishnan</creatorcontrib><creatorcontrib>Jeong, In Young</creatorcontrib><creatorcontrib>Li, Wenting</creatorcontrib><creatorcontrib>Lee, So-Hyun</creatorcontrib><creatorcontrib>Kang, Kyung-Wook</creatorcontrib><creatorcontrib>Maeng, Jin-Soo</creatorcontrib><creatorcontrib>Kang, Hyuno</creatorcontrib><creatorcontrib>Shin, Hee-Young</creatorcontrib><creatorcontrib>Park, Hae-Chul</creatorcontrib><creatorcontrib>Kim, Sohee</creatorcontrib><creatorcontrib>Choi, Seok-Yong</creatorcontrib><creatorcontrib>Kim, Myeong-Kyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Tai-Seung</au><au>Zhang, Jun</au><au>Chandrasekaran, Gopalakrishnan</au><au>Jeong, In Young</au><au>Li, Wenting</au><au>Lee, So-Hyun</au><au>Kang, Kyung-Wook</au><au>Maeng, Jin-Soo</au><au>Kang, Hyuno</au><au>Shin, Hee-Young</au><au>Park, Hae-Chul</au><au>Kim, Sohee</au><au>Choi, Seok-Yong</au><au>Kim, Myeong-Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A zebrafish model of nondystrophic myotonia with sodium channelopathy</atitle><jtitle>Neuroscience letters</jtitle><addtitle>Neurosci Lett</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>714</volume><spage>134579</spage><epage>134579</epage><pages>134579-134579</pages><artnum>134579</artnum><issn>0304-3940</issn><eissn>1872-7972</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>•Nondystrophic myotonias are disorders of Na+ and Cl− channels in skeletal muscles.•We generated transgenic zebrafish expressing a human mutant allele of Na+ channels.•The transgenic zebrafish showed electromyographic features of transgenic zebrafish.•The zebrafish displayed swimming behavior suggestive of nondystrophic myotonias.•This zebrafish model is a good vertebrate model of human nondystrophic myotonias. Nondystrophic myotonias are disorders of Na+ (Nav1.4 or SCN4A) and Cl− (CLCN1) channels in skeletal muscles, and frequently show phenotype heterogeneity. The molecular mechanism underlying their pathophysiology and phenotype heterogeneity remains unclear. As zebrafish models have been recently exploited for studies of the pathophysiology and phenotype heterogeneity of various human genetic diseases, a zebrafish model may be useful for delineating nondystrophic myotonias. Here, we generated transgenic zebrafish expressing a human mutant allele of SCN4A, referred to as Tg(mylpfa:N440K), and needle electromyography revealed increased number of myotonic discharges and positive sharp waves in the muscles of Tg(mylpfa:N440K) than in controls. In addition, forced exercise test at a water temperature of 24 °C showed a decrease in the distance moved, time spent in and number of visits to the zone with stronger swimming resistance. Finally, a forced exercise test at a water temperature of 18 °C exhibited a higher number of dive-bombing periods and drifting-down behavior than in controls. These findings indicate that Tg(mylpfa:N440K) is a good vertebrate model of exercise- and cold-induced human nondystrophic myotonias. This zebrafish model may contribute to provide insight into the pathophysiology of myotonia in sodium channelopathy and could be used to explore a new therapeutic avenue.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>31669315</pmid><doi>10.1016/j.neulet.2019.134579</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9032-9907</orcidid><orcidid>https://orcid.org/0000-0001-7193-292X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-3940
ispartof Neuroscience letters, 2020-01, Vol.714, p.134579-134579, Article 134579
issn 0304-3940
1872-7972
language eng
recordid cdi_proquest_miscellaneous_2310721801
source ScienceDirect Freedom Collection
subjects Animals
Animals, Genetically Modified
Cold Temperature
Disease Models, Animal
Electromyography
Hyperkalemic periodic paralysis
Muscle, Skeletal - physiopathology
Mutation, Missense
Myotonia
Myotonia - genetics
Myotonia - physiopathology
Myotonia Congenita - genetics
Myotonia Congenita - physiopathology
Myotonic Disorders - genetics
Myotonic Disorders - physiopathology
NAV1.4 Voltage-Gated Sodium Channel - genetics
Paralysis, Hyperkalemic Periodic - genetics
Paralysis, Hyperkalemic Periodic - physiopathology
Paramyotonia congenita
Physical Exertion
Sodium channel
Zebrafish
title A zebrafish model of nondystrophic myotonia with sodium channelopathy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T03%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20zebrafish%20model%20of%20nondystrophic%20myotonia%20with%20sodium%20channelopathy&rft.jtitle=Neuroscience%20letters&rft.au=Nam,%20Tai-Seung&rft.date=2020-01-01&rft.volume=714&rft.spage=134579&rft.epage=134579&rft.pages=134579-134579&rft.artnum=134579&rft.issn=0304-3940&rft.eissn=1872-7972&rft_id=info:doi/10.1016/j.neulet.2019.134579&rft_dat=%3Cproquest_cross%3E2310721801%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-45008bd16e94057684d00cac657d2581b576ca90bbb4d569a20320d08a2013c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2310721801&rft_id=info:pmid/31669315&rfr_iscdi=true