Loading…

Development of Direct-Laser-Printable Light-Powered Nanocomposites

Four-dimensional (4D) printable light-powered materials have emerged as a new generation of materials for the development of functional devices. The design of these types of materials is mostly based on the trans–cis transformation of azobenzene moieties in a liquid crystalline elastomer (LCE) matri...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2019-05, Vol.11 (21), p.19541-19553
Main Authors: Chen, Ling, Dong, Yuqing, Tang, Chak-Yin, Zhong, Lei, Law, Wing-Cheung, Tsui, Gary C. P, Yang, Yingkui, Xie, Xiaolin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a330t-a7eaa8b456c97b1acccab8dd539176cf3c51692cb7b0921b51bdda3be78a7ac93
cites cdi_FETCH-LOGICAL-a330t-a7eaa8b456c97b1acccab8dd539176cf3c51692cb7b0921b51bdda3be78a7ac93
container_end_page 19553
container_issue 21
container_start_page 19541
container_title ACS applied materials & interfaces
container_volume 11
creator Chen, Ling
Dong, Yuqing
Tang, Chak-Yin
Zhong, Lei
Law, Wing-Cheung
Tsui, Gary C. P
Yang, Yingkui
Xie, Xiaolin
description Four-dimensional (4D) printable light-powered materials have emerged as a new generation of materials for the development of functional devices. The design of these types of materials is mostly based on the trans–cis transformation of azobenzene moieties in a liquid crystalline elastomer (LCE) matrix, in which the motion is triggered by ultraviolet (UV) irradiation. In this paper, we first report on a direct laser printable photoresist for producing light-powered 4D structures with enhanced mechanical properties and near-infrared (NIR) responsive mechanical deformation. The reported nanocomposite design is based on the photothermal effects of gold nanorods (AuNRs), which can induce the nematic-to-isotropic transition of LCE upon exposure to NIR irradiation. The miscibility between AuNRs and LCE is enhanced by thiol functionalization. Appropriate printing parameters are determined, and nanocomposites containing 0–3 wt % of AuNR loading are fabricated via femtosecond two-photon direct laser writing. The effects of the AuNR loading fraction and laser power on the light-powered actuating performance are evaluated. It is found that the nanocomposite with AuNR loading of 3 wt % demonstrates the maximum percentage (20%) of elongation under an NIR laser power of 2 W. An increase in laser power can lead to faster deformation but slower restoration. The nanocomposites demonstrate relatively good stability. Even after 300 actuation cycles, 80% of the elongation magnitude can be retained. In addition, an improvement of 80% in the complex modulus of the nanocomposites, due to the inclusion of AuNRs, is observed.
doi_str_mv 10.1021/acsami.9b05871
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231850104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231850104</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-a7eaa8b456c97b1acccab8dd539176cf3c51692cb7b0921b51bdda3be78a7ac93</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwMqKMCCnFjziPEVpeUgQdYLaunRtIlcTBTkD8e4JS2JjuGb5zpPsRcsroklHOLsF4aKplpqlME7ZH5iyLojDlku__5SiakSPvt5TGglN5SGaCUZlxTufkeo0fWNuuwbYPbBmsK4emD3Pw6MKNq9oedI1BXr2-9eHGfqLDIniE1hrbdNZXPfpjclBC7fFkdxfk5fbmeXUf5k93D6urPAQhaB9CggCpjmRsskQzMMaATotCiowlsSmFkSzOuNGJphlnWjJdFCA0JikkYDKxIOfTbufs-4C-V03lDdY1tGgHrzgXLJWU0WhElxNqnPXeYak6VzXgvhSj6sebmrypnbexcLbbHnSDxR_-K2oELiZgLKqtHVw7vvrf2jfc53jC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231850104</pqid></control><display><type>article</type><title>Development of Direct-Laser-Printable Light-Powered Nanocomposites</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Chen, Ling ; Dong, Yuqing ; Tang, Chak-Yin ; Zhong, Lei ; Law, Wing-Cheung ; Tsui, Gary C. P ; Yang, Yingkui ; Xie, Xiaolin</creator><creatorcontrib>Chen, Ling ; Dong, Yuqing ; Tang, Chak-Yin ; Zhong, Lei ; Law, Wing-Cheung ; Tsui, Gary C. P ; Yang, Yingkui ; Xie, Xiaolin</creatorcontrib><description>Four-dimensional (4D) printable light-powered materials have emerged as a new generation of materials for the development of functional devices. The design of these types of materials is mostly based on the trans–cis transformation of azobenzene moieties in a liquid crystalline elastomer (LCE) matrix, in which the motion is triggered by ultraviolet (UV) irradiation. In this paper, we first report on a direct laser printable photoresist for producing light-powered 4D structures with enhanced mechanical properties and near-infrared (NIR) responsive mechanical deformation. The reported nanocomposite design is based on the photothermal effects of gold nanorods (AuNRs), which can induce the nematic-to-isotropic transition of LCE upon exposure to NIR irradiation. The miscibility between AuNRs and LCE is enhanced by thiol functionalization. Appropriate printing parameters are determined, and nanocomposites containing 0–3 wt % of AuNR loading are fabricated via femtosecond two-photon direct laser writing. The effects of the AuNR loading fraction and laser power on the light-powered actuating performance are evaluated. It is found that the nanocomposite with AuNR loading of 3 wt % demonstrates the maximum percentage (20%) of elongation under an NIR laser power of 2 W. An increase in laser power can lead to faster deformation but slower restoration. The nanocomposites demonstrate relatively good stability. Even after 300 actuation cycles, 80% of the elongation magnitude can be retained. In addition, an improvement of 80% in the complex modulus of the nanocomposites, due to the inclusion of AuNRs, is observed.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b05871</identifier><identifier>PMID: 31059220</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-05, Vol.11 (21), p.19541-19553</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-a7eaa8b456c97b1acccab8dd539176cf3c51692cb7b0921b51bdda3be78a7ac93</citedby><cites>FETCH-LOGICAL-a330t-a7eaa8b456c97b1acccab8dd539176cf3c51692cb7b0921b51bdda3be78a7ac93</cites><orcidid>0000-0003-2577-024X ; 0000-0003-3855-6170 ; 0000-0001-5097-7416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31059220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Ling</creatorcontrib><creatorcontrib>Dong, Yuqing</creatorcontrib><creatorcontrib>Tang, Chak-Yin</creatorcontrib><creatorcontrib>Zhong, Lei</creatorcontrib><creatorcontrib>Law, Wing-Cheung</creatorcontrib><creatorcontrib>Tsui, Gary C. P</creatorcontrib><creatorcontrib>Yang, Yingkui</creatorcontrib><creatorcontrib>Xie, Xiaolin</creatorcontrib><title>Development of Direct-Laser-Printable Light-Powered Nanocomposites</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Four-dimensional (4D) printable light-powered materials have emerged as a new generation of materials for the development of functional devices. The design of these types of materials is mostly based on the trans–cis transformation of azobenzene moieties in a liquid crystalline elastomer (LCE) matrix, in which the motion is triggered by ultraviolet (UV) irradiation. In this paper, we first report on a direct laser printable photoresist for producing light-powered 4D structures with enhanced mechanical properties and near-infrared (NIR) responsive mechanical deformation. The reported nanocomposite design is based on the photothermal effects of gold nanorods (AuNRs), which can induce the nematic-to-isotropic transition of LCE upon exposure to NIR irradiation. The miscibility between AuNRs and LCE is enhanced by thiol functionalization. Appropriate printing parameters are determined, and nanocomposites containing 0–3 wt % of AuNR loading are fabricated via femtosecond two-photon direct laser writing. The effects of the AuNR loading fraction and laser power on the light-powered actuating performance are evaluated. It is found that the nanocomposite with AuNR loading of 3 wt % demonstrates the maximum percentage (20%) of elongation under an NIR laser power of 2 W. An increase in laser power can lead to faster deformation but slower restoration. The nanocomposites demonstrate relatively good stability. Even after 300 actuation cycles, 80% of the elongation magnitude can be retained. In addition, an improvement of 80% in the complex modulus of the nanocomposites, due to the inclusion of AuNRs, is observed.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqWwMqKMCCnFjziPEVpeUgQdYLaunRtIlcTBTkD8e4JS2JjuGb5zpPsRcsroklHOLsF4aKplpqlME7ZH5iyLojDlku__5SiakSPvt5TGglN5SGaCUZlxTufkeo0fWNuuwbYPbBmsK4emD3Pw6MKNq9oedI1BXr2-9eHGfqLDIniE1hrbdNZXPfpjclBC7fFkdxfk5fbmeXUf5k93D6urPAQhaB9CggCpjmRsskQzMMaATotCiowlsSmFkSzOuNGJphlnWjJdFCA0JikkYDKxIOfTbufs-4C-V03lDdY1tGgHrzgXLJWU0WhElxNqnPXeYak6VzXgvhSj6sebmrypnbexcLbbHnSDxR_-K2oELiZgLKqtHVw7vvrf2jfc53jC</recordid><startdate>20190529</startdate><enddate>20190529</enddate><creator>Chen, Ling</creator><creator>Dong, Yuqing</creator><creator>Tang, Chak-Yin</creator><creator>Zhong, Lei</creator><creator>Law, Wing-Cheung</creator><creator>Tsui, Gary C. P</creator><creator>Yang, Yingkui</creator><creator>Xie, Xiaolin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2577-024X</orcidid><orcidid>https://orcid.org/0000-0003-3855-6170</orcidid><orcidid>https://orcid.org/0000-0001-5097-7416</orcidid></search><sort><creationdate>20190529</creationdate><title>Development of Direct-Laser-Printable Light-Powered Nanocomposites</title><author>Chen, Ling ; Dong, Yuqing ; Tang, Chak-Yin ; Zhong, Lei ; Law, Wing-Cheung ; Tsui, Gary C. P ; Yang, Yingkui ; Xie, Xiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-a7eaa8b456c97b1acccab8dd539176cf3c51692cb7b0921b51bdda3be78a7ac93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ling</creatorcontrib><creatorcontrib>Dong, Yuqing</creatorcontrib><creatorcontrib>Tang, Chak-Yin</creatorcontrib><creatorcontrib>Zhong, Lei</creatorcontrib><creatorcontrib>Law, Wing-Cheung</creatorcontrib><creatorcontrib>Tsui, Gary C. P</creatorcontrib><creatorcontrib>Yang, Yingkui</creatorcontrib><creatorcontrib>Xie, Xiaolin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ling</au><au>Dong, Yuqing</au><au>Tang, Chak-Yin</au><au>Zhong, Lei</au><au>Law, Wing-Cheung</au><au>Tsui, Gary C. P</au><au>Yang, Yingkui</au><au>Xie, Xiaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Direct-Laser-Printable Light-Powered Nanocomposites</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-05-29</date><risdate>2019</risdate><volume>11</volume><issue>21</issue><spage>19541</spage><epage>19553</epage><pages>19541-19553</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Four-dimensional (4D) printable light-powered materials have emerged as a new generation of materials for the development of functional devices. The design of these types of materials is mostly based on the trans–cis transformation of azobenzene moieties in a liquid crystalline elastomer (LCE) matrix, in which the motion is triggered by ultraviolet (UV) irradiation. In this paper, we first report on a direct laser printable photoresist for producing light-powered 4D structures with enhanced mechanical properties and near-infrared (NIR) responsive mechanical deformation. The reported nanocomposite design is based on the photothermal effects of gold nanorods (AuNRs), which can induce the nematic-to-isotropic transition of LCE upon exposure to NIR irradiation. The miscibility between AuNRs and LCE is enhanced by thiol functionalization. Appropriate printing parameters are determined, and nanocomposites containing 0–3 wt % of AuNR loading are fabricated via femtosecond two-photon direct laser writing. The effects of the AuNR loading fraction and laser power on the light-powered actuating performance are evaluated. It is found that the nanocomposite with AuNR loading of 3 wt % demonstrates the maximum percentage (20%) of elongation under an NIR laser power of 2 W. An increase in laser power can lead to faster deformation but slower restoration. The nanocomposites demonstrate relatively good stability. Even after 300 actuation cycles, 80% of the elongation magnitude can be retained. In addition, an improvement of 80% in the complex modulus of the nanocomposites, due to the inclusion of AuNRs, is observed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31059220</pmid><doi>10.1021/acsami.9b05871</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2577-024X</orcidid><orcidid>https://orcid.org/0000-0003-3855-6170</orcidid><orcidid>https://orcid.org/0000-0001-5097-7416</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-05, Vol.11 (21), p.19541-19553
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2231850104
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Development of Direct-Laser-Printable Light-Powered Nanocomposites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T07%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Direct-Laser-Printable%20Light-Powered%20Nanocomposites&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Chen,%20Ling&rft.date=2019-05-29&rft.volume=11&rft.issue=21&rft.spage=19541&rft.epage=19553&rft.pages=19541-19553&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b05871&rft_dat=%3Cproquest_cross%3E2231850104%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-a7eaa8b456c97b1acccab8dd539176cf3c51692cb7b0921b51bdda3be78a7ac93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2231850104&rft_id=info:pmid/31059220&rfr_iscdi=true