Loading…

Temporal separation of Cerenkov radiation and scintillation using artificial neural networks in Clinical LINACs

•The neural network estimates the shape of the Cerenkov radiation response well.•The neural network was most successful for in field regions of the dose profiles.•The temporal Cerenkov radiation response is dependent on the beam energy.•Neural networks were designed with the consideration of beam en...

Full description

Saved in:
Bibliographic Details
Published in:Physica medica 2018-10, Vol.54, p.131-136
Main Authors: Madden, Levi, Archer, James, Li, Enbang, Wilkinson, Dean, Rosenfeld, Anatoly
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c466t-a64b6eee929342dbfc515291d3bf4e2d7a6fe57956159de07168aa152ccd39803
cites cdi_FETCH-LOGICAL-c466t-a64b6eee929342dbfc515291d3bf4e2d7a6fe57956159de07168aa152ccd39803
container_end_page 136
container_issue
container_start_page 131
container_title Physica medica
container_volume 54
creator Madden, Levi
Archer, James
Li, Enbang
Wilkinson, Dean
Rosenfeld, Anatoly
description •The neural network estimates the shape of the Cerenkov radiation response well.•The neural network was most successful for in field regions of the dose profiles.•The temporal Cerenkov radiation response is dependent on the beam energy.•Neural networks were designed with the consideration of beam energy dependence. The irradiation of scintillator-fiber optic dosimeters by clinical LINACs results in the measurement of scintillation and Cerenkov radiation. In scintillator-fiber optic dosimetry, the scintillation and Cerenkov radiation responses are separated to determine the dose deposited in the scintillator volume. Artificial neural networks (ANNs) were trained and applied in a novel single probe method for the temporal separation of scintillation and Cerenkov radiation. Six dose profiles were measured using the ANN, with the dose profiles compared to those measured using background subtraction and an ionisation chamber. The average dose discrepancy of the ANN measured dose was 2.2% with respect to the ionisation chamber dose and 1.2% with respect to the background subtraction measured dose, while the average dose discrepancy of the background subtraction dose was 1.6% with respect to the ionisation chamber dose. The ANNs performance was degraded when compared with background subtraction, arising from an inaccurate model used to synthesise ANN training data.
doi_str_mv 10.1016/j.ejmp.2018.10.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2123721529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1120179718312936</els_id><sourcerecordid>2123721529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-a64b6eee929342dbfc515291d3bf4e2d7a6fe57956159de07168aa152ccd39803</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl5ewIV06aZjLm0zBTdD8TIw6GYEdyGTnErGNqlJq_j2plZdujrh5zs_OR9C5wTPCSbF1W4Ou7abU0wWMZhjzPfQjHCapaQkz_vxTShOCS_5EToOYYcxozTPD9ERw4xxjOkMuQ20nfOySQJ00sveOJu4OqnAg31174mX2kyptDoJytjeNM2UDMHYl0T63tRGmdhhYfDfo_9w_jUkxiZVY6xRMVyvHpZVOEUHtWwCnP3ME_R0e7Op7tP1492qWq5TlRVFn8oi2xYAUNKSZVRva5WTnJZEs22dAdVcFjXkvMwLkpcaMCfFQsqIKKVZucDsBF1OvZ13bwOEXrQmKIg_t-CGICihjNOxM6J0QpV3IXioRedNK_2nIFiMosVOjKLFKHrMoui4dPHTP2xb0H8rv2YjcD0BEK98N-BFdAdWgTYeVC-0M__1fwG2w5CF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123721529</pqid></control><display><type>article</type><title>Temporal separation of Cerenkov radiation and scintillation using artificial neural networks in Clinical LINACs</title><source>ScienceDirect Freedom Collection</source><creator>Madden, Levi ; Archer, James ; Li, Enbang ; Wilkinson, Dean ; Rosenfeld, Anatoly</creator><creatorcontrib>Madden, Levi ; Archer, James ; Li, Enbang ; Wilkinson, Dean ; Rosenfeld, Anatoly</creatorcontrib><description>•The neural network estimates the shape of the Cerenkov radiation response well.•The neural network was most successful for in field regions of the dose profiles.•The temporal Cerenkov radiation response is dependent on the beam energy.•Neural networks were designed with the consideration of beam energy dependence. The irradiation of scintillator-fiber optic dosimeters by clinical LINACs results in the measurement of scintillation and Cerenkov radiation. In scintillator-fiber optic dosimetry, the scintillation and Cerenkov radiation responses are separated to determine the dose deposited in the scintillator volume. Artificial neural networks (ANNs) were trained and applied in a novel single probe method for the temporal separation of scintillation and Cerenkov radiation. Six dose profiles were measured using the ANN, with the dose profiles compared to those measured using background subtraction and an ionisation chamber. The average dose discrepancy of the ANN measured dose was 2.2% with respect to the ionisation chamber dose and 1.2% with respect to the background subtraction measured dose, while the average dose discrepancy of the background subtraction dose was 1.6% with respect to the ionisation chamber dose. The ANNs performance was degraded when compared with background subtraction, arising from an inaccurate model used to synthesise ANN training data.</description><identifier>ISSN: 1120-1797</identifier><identifier>EISSN: 1724-191X</identifier><identifier>DOI: 10.1016/j.ejmp.2018.10.007</identifier><identifier>PMID: 30337002</identifier><language>eng</language><publisher>Italy: Elsevier Ltd</publisher><subject>Artificial neural network ; Cerenkov radiation ; Optical fiber ; Scintillator ; X-ray dosimetry</subject><ispartof>Physica medica, 2018-10, Vol.54, p.131-136</ispartof><rights>2018 Associazione Italiana di Fisica Medica</rights><rights>Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-a64b6eee929342dbfc515291d3bf4e2d7a6fe57956159de07168aa152ccd39803</citedby><cites>FETCH-LOGICAL-c466t-a64b6eee929342dbfc515291d3bf4e2d7a6fe57956159de07168aa152ccd39803</cites><orcidid>0000-0002-8954-2521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30337002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Madden, Levi</creatorcontrib><creatorcontrib>Archer, James</creatorcontrib><creatorcontrib>Li, Enbang</creatorcontrib><creatorcontrib>Wilkinson, Dean</creatorcontrib><creatorcontrib>Rosenfeld, Anatoly</creatorcontrib><title>Temporal separation of Cerenkov radiation and scintillation using artificial neural networks in Clinical LINACs</title><title>Physica medica</title><addtitle>Phys Med</addtitle><description>•The neural network estimates the shape of the Cerenkov radiation response well.•The neural network was most successful for in field regions of the dose profiles.•The temporal Cerenkov radiation response is dependent on the beam energy.•Neural networks were designed with the consideration of beam energy dependence. The irradiation of scintillator-fiber optic dosimeters by clinical LINACs results in the measurement of scintillation and Cerenkov radiation. In scintillator-fiber optic dosimetry, the scintillation and Cerenkov radiation responses are separated to determine the dose deposited in the scintillator volume. Artificial neural networks (ANNs) were trained and applied in a novel single probe method for the temporal separation of scintillation and Cerenkov radiation. Six dose profiles were measured using the ANN, with the dose profiles compared to those measured using background subtraction and an ionisation chamber. The average dose discrepancy of the ANN measured dose was 2.2% with respect to the ionisation chamber dose and 1.2% with respect to the background subtraction measured dose, while the average dose discrepancy of the background subtraction dose was 1.6% with respect to the ionisation chamber dose. The ANNs performance was degraded when compared with background subtraction, arising from an inaccurate model used to synthesise ANN training data.</description><subject>Artificial neural network</subject><subject>Cerenkov radiation</subject><subject>Optical fiber</subject><subject>Scintillator</subject><subject>X-ray dosimetry</subject><issn>1120-1797</issn><issn>1724-191X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOl5ewIV06aZjLm0zBTdD8TIw6GYEdyGTnErGNqlJq_j2plZdujrh5zs_OR9C5wTPCSbF1W4Ou7abU0wWMZhjzPfQjHCapaQkz_vxTShOCS_5EToOYYcxozTPD9ERw4xxjOkMuQ20nfOySQJ00sveOJu4OqnAg31174mX2kyptDoJytjeNM2UDMHYl0T63tRGmdhhYfDfo_9w_jUkxiZVY6xRMVyvHpZVOEUHtWwCnP3ME_R0e7Op7tP1492qWq5TlRVFn8oi2xYAUNKSZVRva5WTnJZEs22dAdVcFjXkvMwLkpcaMCfFQsqIKKVZucDsBF1OvZ13bwOEXrQmKIg_t-CGICihjNOxM6J0QpV3IXioRedNK_2nIFiMosVOjKLFKHrMoui4dPHTP2xb0H8rv2YjcD0BEK98N-BFdAdWgTYeVC-0M__1fwG2w5CF</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Madden, Levi</creator><creator>Archer, James</creator><creator>Li, Enbang</creator><creator>Wilkinson, Dean</creator><creator>Rosenfeld, Anatoly</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8954-2521</orcidid></search><sort><creationdate>201810</creationdate><title>Temporal separation of Cerenkov radiation and scintillation using artificial neural networks in Clinical LINACs</title><author>Madden, Levi ; Archer, James ; Li, Enbang ; Wilkinson, Dean ; Rosenfeld, Anatoly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-a64b6eee929342dbfc515291d3bf4e2d7a6fe57956159de07168aa152ccd39803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural network</topic><topic>Cerenkov radiation</topic><topic>Optical fiber</topic><topic>Scintillator</topic><topic>X-ray dosimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madden, Levi</creatorcontrib><creatorcontrib>Archer, James</creatorcontrib><creatorcontrib>Li, Enbang</creatorcontrib><creatorcontrib>Wilkinson, Dean</creatorcontrib><creatorcontrib>Rosenfeld, Anatoly</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physica medica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madden, Levi</au><au>Archer, James</au><au>Li, Enbang</au><au>Wilkinson, Dean</au><au>Rosenfeld, Anatoly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal separation of Cerenkov radiation and scintillation using artificial neural networks in Clinical LINACs</atitle><jtitle>Physica medica</jtitle><addtitle>Phys Med</addtitle><date>2018-10</date><risdate>2018</risdate><volume>54</volume><spage>131</spage><epage>136</epage><pages>131-136</pages><issn>1120-1797</issn><eissn>1724-191X</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>•The neural network estimates the shape of the Cerenkov radiation response well.•The neural network was most successful for in field regions of the dose profiles.•The temporal Cerenkov radiation response is dependent on the beam energy.•Neural networks were designed with the consideration of beam energy dependence. The irradiation of scintillator-fiber optic dosimeters by clinical LINACs results in the measurement of scintillation and Cerenkov radiation. In scintillator-fiber optic dosimetry, the scintillation and Cerenkov radiation responses are separated to determine the dose deposited in the scintillator volume. Artificial neural networks (ANNs) were trained and applied in a novel single probe method for the temporal separation of scintillation and Cerenkov radiation. Six dose profiles were measured using the ANN, with the dose profiles compared to those measured using background subtraction and an ionisation chamber. The average dose discrepancy of the ANN measured dose was 2.2% with respect to the ionisation chamber dose and 1.2% with respect to the background subtraction measured dose, while the average dose discrepancy of the background subtraction dose was 1.6% with respect to the ionisation chamber dose. The ANNs performance was degraded when compared with background subtraction, arising from an inaccurate model used to synthesise ANN training data.</abstract><cop>Italy</cop><pub>Elsevier Ltd</pub><pmid>30337002</pmid><doi>10.1016/j.ejmp.2018.10.007</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8954-2521</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1120-1797
ispartof Physica medica, 2018-10, Vol.54, p.131-136
issn 1120-1797
1724-191X
language eng
recordid cdi_proquest_miscellaneous_2123721529
source ScienceDirect Freedom Collection
subjects Artificial neural network
Cerenkov radiation
Optical fiber
Scintillator
X-ray dosimetry
title Temporal separation of Cerenkov radiation and scintillation using artificial neural networks in Clinical LINACs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T09%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20separation%20of%20Cerenkov%20radiation%20and%20scintillation%20using%20artificial%20neural%20networks%20in%20Clinical%20LINACs&rft.jtitle=Physica%20medica&rft.au=Madden,%20Levi&rft.date=2018-10&rft.volume=54&rft.spage=131&rft.epage=136&rft.pages=131-136&rft.issn=1120-1797&rft.eissn=1724-191X&rft_id=info:doi/10.1016/j.ejmp.2018.10.007&rft_dat=%3Cproquest_cross%3E2123721529%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-a64b6eee929342dbfc515291d3bf4e2d7a6fe57956159de07168aa152ccd39803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123721529&rft_id=info:pmid/30337002&rfr_iscdi=true