Loading…

Retinal Neurostimulator for a Multifocal Vision Prosthesis

A neurostimulator application-specific integrated circuit (ASIC) with scalable circuitry that can stimulate 14 channels, has been developed for an epi-retinal vision prosthesis. This ASIC was designed to allow seven identical units to be connected to control up to 98 channels, with the ability to st...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2007-09, Vol.15 (3), p.425-434
Main Authors: Wong, Yan T., Dommel, Norbert, Preston, Philip, Hallum, Luke E., Lehmann, Torsten, Lovell, Nigel H., Suaning, Gregg J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c560t-c3e177657eb7a6f1fa3d740aa14810ee153150cf456aa97855b0e6e7f78b3263
cites cdi_FETCH-LOGICAL-c560t-c3e177657eb7a6f1fa3d740aa14810ee153150cf456aa97855b0e6e7f78b3263
container_end_page 434
container_issue 3
container_start_page 425
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 15
creator Wong, Yan T.
Dommel, Norbert
Preston, Philip
Hallum, Luke E.
Lehmann, Torsten
Lovell, Nigel H.
Suaning, Gregg J.
description A neurostimulator application-specific integrated circuit (ASIC) with scalable circuitry that can stimulate 14 channels, has been developed for an epi-retinal vision prosthesis. This ASIC was designed to allow seven identical units to be connected to control up to 98 channels, with the ability to stimulate 14 electrodes simultaneously. The neurostimulator forms part of a vision prosthesis, designed to restore vision to patients who have lost their sight due to retinal diseases such as retinitis pigmentosa and macular degeneration. For charge balance, the neurostimulator was designed to stimulate with current sources and sinks operating together, and with the ability to drive a hexagonal mosaic of electrodes to reduce the electrical crosstalk that occurs when multiple bipolar stimulation sites are active simultaneously. A hexagonal mosaic of electrodes surrounds each stimulation site and has been shown to effectively isolate each site, increasing the ability to inject localized independent charge into multiple regions simultaneously.
doi_str_mv 10.1109/TNSRE.2007.903958
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20503831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4303115</ieee_id><sourcerecordid>1671381605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-c3e177657eb7a6f1fa3d740aa14810ee153150cf456aa97855b0e6e7f78b3263</originalsourceid><addsrcrecordid>eNqFkctLAzEQxoMoWh9_gAhSPKiXrTOb53qTUh_gCy1eQ7rOYsq2Wze7B_97s7YoeNBDmMD85kvm-xjbRxggQnY2vn9-Gg1SAD3IgGfSrLEeSmkSSBHWuzsXieApbLHtEKYAqJXUm2wLtclEqmWPnT9R4-eu7N9TW1eh8bO2dE1V94t4XP-uLRtfVHkEXnzw1bz_2FFvFHzYZRuFKwPtreoOG1-OxsPr5Pbh6mZ4cZvkUkGT5JxQd-_SRDtVYOH4qxbgHAqDQBQ_iRLyQkjlXKaNlBMgRbrQZsJTxXfYyVJ2UVfvLYXGznzIqSzdnKo2WKMFZiCBR_L4T1IZjqnQ-C-YdnIRjuDpnyCqqGZQgYzo0S90WrV1dDbYDLWI20G3Cy6hPLoYairsovYzV39YBNtFar8itV2kdhlpnDlcCbeTGb3-TKwyjMDBEvBE9N0WHDhGbz8Bg3CisQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917445606</pqid></control><display><type>article</type><title>Retinal Neurostimulator for a Multifocal Vision Prosthesis</title><source>Alma/SFX Local Collection</source><creator>Wong, Yan T. ; Dommel, Norbert ; Preston, Philip ; Hallum, Luke E. ; Lehmann, Torsten ; Lovell, Nigel H. ; Suaning, Gregg J.</creator><creatorcontrib>Wong, Yan T. ; Dommel, Norbert ; Preston, Philip ; Hallum, Luke E. ; Lehmann, Torsten ; Lovell, Nigel H. ; Suaning, Gregg J.</creatorcontrib><description>A neurostimulator application-specific integrated circuit (ASIC) with scalable circuitry that can stimulate 14 channels, has been developed for an epi-retinal vision prosthesis. This ASIC was designed to allow seven identical units to be connected to control up to 98 channels, with the ability to stimulate 14 electrodes simultaneously. The neurostimulator forms part of a vision prosthesis, designed to restore vision to patients who have lost their sight due to retinal diseases such as retinitis pigmentosa and macular degeneration. For charge balance, the neurostimulator was designed to stimulate with current sources and sinks operating together, and with the ability to drive a hexagonal mosaic of electrodes to reduce the electrical crosstalk that occurs when multiple bipolar stimulation sites are active simultaneously. A hexagonal mosaic of electrodes surrounds each stimulation site and has been shown to effectively isolate each site, increasing the ability to inject localized independent charge into multiple regions simultaneously.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2007.903958</identifier><identifier>PMID: 17894275</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Application specific integrated circuits ; Australia ; Biomedical engineering ; Channels ; Charge ; Charge (electric) ; Diseases ; Electric charge ; Electric Stimulation Therapy - instrumentation ; Electric Stimulation Therapy - methods ; Electrical stimulation ; Electrodes ; Electrodes, Implanted ; Equipment Design ; Equipment Failure Analysis ; Eyes &amp; eyesight ; Frequency ; Humans ; Integrated circuit ; Macular degeneration ; neurostimulator ; Pigmentation ; Prostheses ; Prostheses and Implants ; Prosthetics ; Retina ; Retinal Diseases - rehabilitation ; Sensory Aids ; Signal Processing, Computer-Assisted - instrumentation ; simultaneous stimulation ; Stimulation ; Surgical implants ; Therapy, Computer-Assisted - instrumentation ; Therapy, Computer-Assisted - methods ; Vision ; Vision Disorders - rehabilitation ; vision prosthesis</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2007-09, Vol.15 (3), p.425-434</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-c3e177657eb7a6f1fa3d740aa14810ee153150cf456aa97855b0e6e7f78b3263</citedby><cites>FETCH-LOGICAL-c560t-c3e177657eb7a6f1fa3d740aa14810ee153150cf456aa97855b0e6e7f78b3263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17894275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, Yan T.</creatorcontrib><creatorcontrib>Dommel, Norbert</creatorcontrib><creatorcontrib>Preston, Philip</creatorcontrib><creatorcontrib>Hallum, Luke E.</creatorcontrib><creatorcontrib>Lehmann, Torsten</creatorcontrib><creatorcontrib>Lovell, Nigel H.</creatorcontrib><creatorcontrib>Suaning, Gregg J.</creatorcontrib><title>Retinal Neurostimulator for a Multifocal Vision Prosthesis</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>A neurostimulator application-specific integrated circuit (ASIC) with scalable circuitry that can stimulate 14 channels, has been developed for an epi-retinal vision prosthesis. This ASIC was designed to allow seven identical units to be connected to control up to 98 channels, with the ability to stimulate 14 electrodes simultaneously. The neurostimulator forms part of a vision prosthesis, designed to restore vision to patients who have lost their sight due to retinal diseases such as retinitis pigmentosa and macular degeneration. For charge balance, the neurostimulator was designed to stimulate with current sources and sinks operating together, and with the ability to drive a hexagonal mosaic of electrodes to reduce the electrical crosstalk that occurs when multiple bipolar stimulation sites are active simultaneously. A hexagonal mosaic of electrodes surrounds each stimulation site and has been shown to effectively isolate each site, increasing the ability to inject localized independent charge into multiple regions simultaneously.</description><subject>Application specific integrated circuits</subject><subject>Australia</subject><subject>Biomedical engineering</subject><subject>Channels</subject><subject>Charge</subject><subject>Charge (electric)</subject><subject>Diseases</subject><subject>Electric charge</subject><subject>Electric Stimulation Therapy - instrumentation</subject><subject>Electric Stimulation Therapy - methods</subject><subject>Electrical stimulation</subject><subject>Electrodes</subject><subject>Electrodes, Implanted</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Eyes &amp; eyesight</subject><subject>Frequency</subject><subject>Humans</subject><subject>Integrated circuit</subject><subject>Macular degeneration</subject><subject>neurostimulator</subject><subject>Pigmentation</subject><subject>Prostheses</subject><subject>Prostheses and Implants</subject><subject>Prosthetics</subject><subject>Retina</subject><subject>Retinal Diseases - rehabilitation</subject><subject>Sensory Aids</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>simultaneous stimulation</subject><subject>Stimulation</subject><subject>Surgical implants</subject><subject>Therapy, Computer-Assisted - instrumentation</subject><subject>Therapy, Computer-Assisted - methods</subject><subject>Vision</subject><subject>Vision Disorders - rehabilitation</subject><subject>vision prosthesis</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkctLAzEQxoMoWh9_gAhSPKiXrTOb53qTUh_gCy1eQ7rOYsq2Wze7B_97s7YoeNBDmMD85kvm-xjbRxggQnY2vn9-Gg1SAD3IgGfSrLEeSmkSSBHWuzsXieApbLHtEKYAqJXUm2wLtclEqmWPnT9R4-eu7N9TW1eh8bO2dE1V94t4XP-uLRtfVHkEXnzw1bz_2FFvFHzYZRuFKwPtreoOG1-OxsPr5Pbh6mZ4cZvkUkGT5JxQd-_SRDtVYOH4qxbgHAqDQBQ_iRLyQkjlXKaNlBMgRbrQZsJTxXfYyVJ2UVfvLYXGznzIqSzdnKo2WKMFZiCBR_L4T1IZjqnQ-C-YdnIRjuDpnyCqqGZQgYzo0S90WrV1dDbYDLWI20G3Cy6hPLoYairsovYzV39YBNtFar8itV2kdhlpnDlcCbeTGb3-TKwyjMDBEvBE9N0WHDhGbz8Bg3CisQ</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Wong, Yan T.</creator><creator>Dommel, Norbert</creator><creator>Preston, Philip</creator><creator>Hallum, Luke E.</creator><creator>Lehmann, Torsten</creator><creator>Lovell, Nigel H.</creator><creator>Suaning, Gregg J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070901</creationdate><title>Retinal Neurostimulator for a Multifocal Vision Prosthesis</title><author>Wong, Yan T. ; Dommel, Norbert ; Preston, Philip ; Hallum, Luke E. ; Lehmann, Torsten ; Lovell, Nigel H. ; Suaning, Gregg J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-c3e177657eb7a6f1fa3d740aa14810ee153150cf456aa97855b0e6e7f78b3263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Application specific integrated circuits</topic><topic>Australia</topic><topic>Biomedical engineering</topic><topic>Channels</topic><topic>Charge</topic><topic>Charge (electric)</topic><topic>Diseases</topic><topic>Electric charge</topic><topic>Electric Stimulation Therapy - instrumentation</topic><topic>Electric Stimulation Therapy - methods</topic><topic>Electrical stimulation</topic><topic>Electrodes</topic><topic>Electrodes, Implanted</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Eyes &amp; eyesight</topic><topic>Frequency</topic><topic>Humans</topic><topic>Integrated circuit</topic><topic>Macular degeneration</topic><topic>neurostimulator</topic><topic>Pigmentation</topic><topic>Prostheses</topic><topic>Prostheses and Implants</topic><topic>Prosthetics</topic><topic>Retina</topic><topic>Retinal Diseases - rehabilitation</topic><topic>Sensory Aids</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>simultaneous stimulation</topic><topic>Stimulation</topic><topic>Surgical implants</topic><topic>Therapy, Computer-Assisted - instrumentation</topic><topic>Therapy, Computer-Assisted - methods</topic><topic>Vision</topic><topic>Vision Disorders - rehabilitation</topic><topic>vision prosthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Yan T.</creatorcontrib><creatorcontrib>Dommel, Norbert</creatorcontrib><creatorcontrib>Preston, Philip</creatorcontrib><creatorcontrib>Hallum, Luke E.</creatorcontrib><creatorcontrib>Lehmann, Torsten</creatorcontrib><creatorcontrib>Lovell, Nigel H.</creatorcontrib><creatorcontrib>Suaning, Gregg J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, Yan T.</au><au>Dommel, Norbert</au><au>Preston, Philip</au><au>Hallum, Luke E.</au><au>Lehmann, Torsten</au><au>Lovell, Nigel H.</au><au>Suaning, Gregg J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retinal Neurostimulator for a Multifocal Vision Prosthesis</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>15</volume><issue>3</issue><spage>425</spage><epage>434</epage><pages>425-434</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>A neurostimulator application-specific integrated circuit (ASIC) with scalable circuitry that can stimulate 14 channels, has been developed for an epi-retinal vision prosthesis. This ASIC was designed to allow seven identical units to be connected to control up to 98 channels, with the ability to stimulate 14 electrodes simultaneously. The neurostimulator forms part of a vision prosthesis, designed to restore vision to patients who have lost their sight due to retinal diseases such as retinitis pigmentosa and macular degeneration. For charge balance, the neurostimulator was designed to stimulate with current sources and sinks operating together, and with the ability to drive a hexagonal mosaic of electrodes to reduce the electrical crosstalk that occurs when multiple bipolar stimulation sites are active simultaneously. A hexagonal mosaic of electrodes surrounds each stimulation site and has been shown to effectively isolate each site, increasing the ability to inject localized independent charge into multiple regions simultaneously.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17894275</pmid><doi>10.1109/TNSRE.2007.903958</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2007-09, Vol.15 (3), p.425-434
issn 1534-4320
1558-0210
language eng
recordid cdi_proquest_miscellaneous_20503831
source Alma/SFX Local Collection
subjects Application specific integrated circuits
Australia
Biomedical engineering
Channels
Charge
Charge (electric)
Diseases
Electric charge
Electric Stimulation Therapy - instrumentation
Electric Stimulation Therapy - methods
Electrical stimulation
Electrodes
Electrodes, Implanted
Equipment Design
Equipment Failure Analysis
Eyes & eyesight
Frequency
Humans
Integrated circuit
Macular degeneration
neurostimulator
Pigmentation
Prostheses
Prostheses and Implants
Prosthetics
Retina
Retinal Diseases - rehabilitation
Sensory Aids
Signal Processing, Computer-Assisted - instrumentation
simultaneous stimulation
Stimulation
Surgical implants
Therapy, Computer-Assisted - instrumentation
Therapy, Computer-Assisted - methods
Vision
Vision Disorders - rehabilitation
vision prosthesis
title Retinal Neurostimulator for a Multifocal Vision Prosthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T03%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retinal%20Neurostimulator%20for%20a%20Multifocal%20Vision%20Prosthesis&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Wong,%20Yan%20T.&rft.date=2007-09-01&rft.volume=15&rft.issue=3&rft.spage=425&rft.epage=434&rft.pages=425-434&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2007.903958&rft_dat=%3Cproquest_cross%3E1671381605%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-c3e177657eb7a6f1fa3d740aa14810ee153150cf456aa97855b0e6e7f78b3263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=917445606&rft_id=info:pmid/17894275&rft_ieee_id=4303115&rfr_iscdi=true