Loading…

SLC1 and SLC4 Encode Partially Redundant Acyl-Coenzyme A 1-Acylglycerol-3-phosphate O-Acyltransferases of Budding Yeast

Phosphatidic acid is the intermediate, from which all glycerophospholipids are synthesized. In yeast, it is generated from lysophosphatidic acid, which is acylated by Slc1p, an sn-2-specific, acyl-coenzyme A-dependent 1-acylglycerol-3-phosphate O-acyltransferase. Deletion of SLC1 is not lethal and d...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2007-10, Vol.282 (42), p.30845-30855
Main Authors: Benghezal, Mohammed, Roubaty, Carole, Veepuri, Vijayanath, Knudsen, Jens, Conzelmann, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c532t-8ee41cb41af5ffa57bcb274fa0e29e5ad496ff052b77085953a4d54e0060d8a33
cites cdi_FETCH-LOGICAL-c532t-8ee41cb41af5ffa57bcb274fa0e29e5ad496ff052b77085953a4d54e0060d8a33
container_end_page 30855
container_issue 42
container_start_page 30845
container_title The Journal of biological chemistry
container_volume 282
creator Benghezal, Mohammed
Roubaty, Carole
Veepuri, Vijayanath
Knudsen, Jens
Conzelmann, Andreas
description Phosphatidic acid is the intermediate, from which all glycerophospholipids are synthesized. In yeast, it is generated from lysophosphatidic acid, which is acylated by Slc1p, an sn-2-specific, acyl-coenzyme A-dependent 1-acylglycerol-3-phosphate O-acyltransferase. Deletion of SLC1 is not lethal and does not eliminate all microsomal 1-acylglycerol-3-phosphate O-acyltransferase activity, suggesting that an additional enzyme may exist. Here we show that SLC4 (Yor175c), a gene of hitherto unknown function, encodes a second 1-acyl-sn-glycerol-3-phosphate acyltransferase. SLC4 harbors a membrane-bound O-acyltransferase motif and down-regulation of SLC4 strongly reduces 1-acyl-sn-glycerol-3-phosphate acyltransferase activity in microsomes from slc1Δ cells. The simultaneous deletion of SLC1 and SLC4 is lethal. Mass spectrometric analysis of lipids from slc1Δ and slc4Δ cells demonstrates that in vivo Slc1p and Slc4p generate almost the same glycerophospholipid profile. Microsomes from slc1Δ and slc4Δ cells incubated with [14C]oleoyl-coenzyme A in the absence of lysophosphatidic acid and without CTP still incorporate the label into glycerophospholipids, indicating that Slc1p and Slc4p can also use endogenous lysoglycerophospholipids as substrates. However, the lipid profiles generated by microsomes from slc1Δ and slc4Δ cells are different, and this suggests that Slc1p and Slc4p have a different substrate specificity or have access to different lyso-glycerophospholipid substrates because of a different subcellular location. Indeed, affinity-purified Slc1p displays Mg2+-dependent acyltransferase activity not only toward lysophosphatidic acid but also lyso forms of phosphatidylserine and phosphatidylinositol. Thus, Slc1p and Slc4p may not only be active as 1-acylglycerol-3-phosphate O-acyltransferases but also be involved in fatty acid exchange at the sn-2-position of mature glycerophospholipids.
doi_str_mv 10.1074/jbc.M702719200
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20309148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820598621</els_id><sourcerecordid>20309148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-8ee41cb41af5ffa57bcb274fa0e29e5ad496ff052b77085953a4d54e0060d8a33</originalsourceid><addsrcrecordid>eNp1kE2P0zAQhiMEYsvClSP4gLiljB27To6lWj6kokUsK8HJcuxx41USFzthFX49Kam0J3wZa-aZV6Mny15SWFOQ_N1dbdZfJDBJKwbwKFtRKIu8EPTH42wFwGheMVFeZM9SuoP58Yo-zS6o3EjBKrrK7m_2O0p0b8n84eSqN8Ei-arj4HXbTuQb2rG3uh_I1kxtvgvY_5k6JFtC81Pn0E4GY2jzIj82IR0bPSC5_jcaou6Tw6gTJhIceT9a6_sD-Yk6Dc-zJ063CV-c62V2--Hq--5Tvr_--Hm33edGFGzIS0ROTc2pdsI5LWRtaia504CsQqEtrzbOgWC1lFCKShSaW8ERYAO21EVxmb1dco8x_BoxDarzyWDb6h7DmBSDAirKyxlcL6CJIaWITh2j73ScFAV1Uq1m1epB9bzw6pw81h3aB_zsdgbeLEDjD829j6hqH0yDnWIlU5ypAkouZuz1gjkdlD5En9TtDQNaAJRUAj0FlQuBs6jfHqNKxmNv0M6hZlA2-P8d-Rcvk6El</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20309148</pqid></control><display><type>article</type><title>SLC1 and SLC4 Encode Partially Redundant Acyl-Coenzyme A 1-Acylglycerol-3-phosphate O-Acyltransferases of Budding Yeast</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><source>Open Access: PubMed Central</source><creator>Benghezal, Mohammed ; Roubaty, Carole ; Veepuri, Vijayanath ; Knudsen, Jens ; Conzelmann, Andreas</creator><creatorcontrib>Benghezal, Mohammed ; Roubaty, Carole ; Veepuri, Vijayanath ; Knudsen, Jens ; Conzelmann, Andreas</creatorcontrib><description>Phosphatidic acid is the intermediate, from which all glycerophospholipids are synthesized. In yeast, it is generated from lysophosphatidic acid, which is acylated by Slc1p, an sn-2-specific, acyl-coenzyme A-dependent 1-acylglycerol-3-phosphate O-acyltransferase. Deletion of SLC1 is not lethal and does not eliminate all microsomal 1-acylglycerol-3-phosphate O-acyltransferase activity, suggesting that an additional enzyme may exist. Here we show that SLC4 (Yor175c), a gene of hitherto unknown function, encodes a second 1-acyl-sn-glycerol-3-phosphate acyltransferase. SLC4 harbors a membrane-bound O-acyltransferase motif and down-regulation of SLC4 strongly reduces 1-acyl-sn-glycerol-3-phosphate acyltransferase activity in microsomes from slc1Δ cells. The simultaneous deletion of SLC1 and SLC4 is lethal. Mass spectrometric analysis of lipids from slc1Δ and slc4Δ cells demonstrates that in vivo Slc1p and Slc4p generate almost the same glycerophospholipid profile. Microsomes from slc1Δ and slc4Δ cells incubated with [14C]oleoyl-coenzyme A in the absence of lysophosphatidic acid and without CTP still incorporate the label into glycerophospholipids, indicating that Slc1p and Slc4p can also use endogenous lysoglycerophospholipids as substrates. However, the lipid profiles generated by microsomes from slc1Δ and slc4Δ cells are different, and this suggests that Slc1p and Slc4p have a different substrate specificity or have access to different lyso-glycerophospholipid substrates because of a different subcellular location. Indeed, affinity-purified Slc1p displays Mg2+-dependent acyltransferase activity not only toward lysophosphatidic acid but also lyso forms of phosphatidylserine and phosphatidylinositol. Thus, Slc1p and Slc4p may not only be active as 1-acylglycerol-3-phosphate O-acyltransferases but also be involved in fatty acid exchange at the sn-2-position of mature glycerophospholipids.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M702719200</identifier><identifier>PMID: 17675291</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acyl Coenzyme A - chemistry ; Acyl Coenzyme A - genetics ; Acyl Coenzyme A - metabolism ; Acyltransferases - chemistry ; Acyltransferases - genetics ; Acyltransferases - metabolism ; Amino Acid Motifs - physiology ; Down-Regulation - physiology ; Dyneins ; Fatty Acids - chemistry ; Fatty Acids - genetics ; Fatty Acids - metabolism ; Gene Deletion ; Gene Expression Regulation, Enzymologic - physiology ; Glycerophospholipids - biosynthesis ; Glycerophospholipids - chemistry ; Glycerophospholipids - genetics ; Lipid Metabolism - physiology ; Lysophospholipids - metabolism ; Mass Spectrometry ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Microsomes - enzymology ; Phosphotransferases (Alcohol Group Acceptor) - chemistry ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Substrate Specificity - physiology</subject><ispartof>The Journal of biological chemistry, 2007-10, Vol.282 (42), p.30845-30855</ispartof><rights>2007 © 2007 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-8ee41cb41af5ffa57bcb274fa0e29e5ad496ff052b77085953a4d54e0060d8a33</citedby><cites>FETCH-LOGICAL-c532t-8ee41cb41af5ffa57bcb274fa0e29e5ad496ff052b77085953a4d54e0060d8a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17675291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benghezal, Mohammed</creatorcontrib><creatorcontrib>Roubaty, Carole</creatorcontrib><creatorcontrib>Veepuri, Vijayanath</creatorcontrib><creatorcontrib>Knudsen, Jens</creatorcontrib><creatorcontrib>Conzelmann, Andreas</creatorcontrib><title>SLC1 and SLC4 Encode Partially Redundant Acyl-Coenzyme A 1-Acylglycerol-3-phosphate O-Acyltransferases of Budding Yeast</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Phosphatidic acid is the intermediate, from which all glycerophospholipids are synthesized. In yeast, it is generated from lysophosphatidic acid, which is acylated by Slc1p, an sn-2-specific, acyl-coenzyme A-dependent 1-acylglycerol-3-phosphate O-acyltransferase. Deletion of SLC1 is not lethal and does not eliminate all microsomal 1-acylglycerol-3-phosphate O-acyltransferase activity, suggesting that an additional enzyme may exist. Here we show that SLC4 (Yor175c), a gene of hitherto unknown function, encodes a second 1-acyl-sn-glycerol-3-phosphate acyltransferase. SLC4 harbors a membrane-bound O-acyltransferase motif and down-regulation of SLC4 strongly reduces 1-acyl-sn-glycerol-3-phosphate acyltransferase activity in microsomes from slc1Δ cells. The simultaneous deletion of SLC1 and SLC4 is lethal. Mass spectrometric analysis of lipids from slc1Δ and slc4Δ cells demonstrates that in vivo Slc1p and Slc4p generate almost the same glycerophospholipid profile. Microsomes from slc1Δ and slc4Δ cells incubated with [14C]oleoyl-coenzyme A in the absence of lysophosphatidic acid and without CTP still incorporate the label into glycerophospholipids, indicating that Slc1p and Slc4p can also use endogenous lysoglycerophospholipids as substrates. However, the lipid profiles generated by microsomes from slc1Δ and slc4Δ cells are different, and this suggests that Slc1p and Slc4p have a different substrate specificity or have access to different lyso-glycerophospholipid substrates because of a different subcellular location. Indeed, affinity-purified Slc1p displays Mg2+-dependent acyltransferase activity not only toward lysophosphatidic acid but also lyso forms of phosphatidylserine and phosphatidylinositol. Thus, Slc1p and Slc4p may not only be active as 1-acylglycerol-3-phosphate O-acyltransferases but also be involved in fatty acid exchange at the sn-2-position of mature glycerophospholipids.</description><subject>Acyl Coenzyme A - chemistry</subject><subject>Acyl Coenzyme A - genetics</subject><subject>Acyl Coenzyme A - metabolism</subject><subject>Acyltransferases - chemistry</subject><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - metabolism</subject><subject>Amino Acid Motifs - physiology</subject><subject>Down-Regulation - physiology</subject><subject>Dyneins</subject><subject>Fatty Acids - chemistry</subject><subject>Fatty Acids - genetics</subject><subject>Fatty Acids - metabolism</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Glycerophospholipids - biosynthesis</subject><subject>Glycerophospholipids - chemistry</subject><subject>Glycerophospholipids - genetics</subject><subject>Lipid Metabolism - physiology</subject><subject>Lysophospholipids - metabolism</subject><subject>Mass Spectrometry</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Microsomes - enzymology</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - chemistry</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Substrate Specificity - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kE2P0zAQhiMEYsvClSP4gLiljB27To6lWj6kokUsK8HJcuxx41USFzthFX49Kam0J3wZa-aZV6Mny15SWFOQ_N1dbdZfJDBJKwbwKFtRKIu8EPTH42wFwGheMVFeZM9SuoP58Yo-zS6o3EjBKrrK7m_2O0p0b8n84eSqN8Ei-arj4HXbTuQb2rG3uh_I1kxtvgvY_5k6JFtC81Pn0E4GY2jzIj82IR0bPSC5_jcaou6Tw6gTJhIceT9a6_sD-Yk6Dc-zJ063CV-c62V2--Hq--5Tvr_--Hm33edGFGzIS0ROTc2pdsI5LWRtaia504CsQqEtrzbOgWC1lFCKShSaW8ERYAO21EVxmb1dco8x_BoxDarzyWDb6h7DmBSDAirKyxlcL6CJIaWITh2j73ScFAV1Uq1m1epB9bzw6pw81h3aB_zsdgbeLEDjD829j6hqH0yDnWIlU5ypAkouZuz1gjkdlD5En9TtDQNaAJRUAj0FlQuBs6jfHqNKxmNv0M6hZlA2-P8d-Rcvk6El</recordid><startdate>20071019</startdate><enddate>20071019</enddate><creator>Benghezal, Mohammed</creator><creator>Roubaty, Carole</creator><creator>Veepuri, Vijayanath</creator><creator>Knudsen, Jens</creator><creator>Conzelmann, Andreas</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope></search><sort><creationdate>20071019</creationdate><title>SLC1 and SLC4 Encode Partially Redundant Acyl-Coenzyme A 1-Acylglycerol-3-phosphate O-Acyltransferases of Budding Yeast</title><author>Benghezal, Mohammed ; Roubaty, Carole ; Veepuri, Vijayanath ; Knudsen, Jens ; Conzelmann, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-8ee41cb41af5ffa57bcb274fa0e29e5ad496ff052b77085953a4d54e0060d8a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acyl Coenzyme A - chemistry</topic><topic>Acyl Coenzyme A - genetics</topic><topic>Acyl Coenzyme A - metabolism</topic><topic>Acyltransferases - chemistry</topic><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - metabolism</topic><topic>Amino Acid Motifs - physiology</topic><topic>Down-Regulation - physiology</topic><topic>Dyneins</topic><topic>Fatty Acids - chemistry</topic><topic>Fatty Acids - genetics</topic><topic>Fatty Acids - metabolism</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Glycerophospholipids - biosynthesis</topic><topic>Glycerophospholipids - chemistry</topic><topic>Glycerophospholipids - genetics</topic><topic>Lipid Metabolism - physiology</topic><topic>Lysophospholipids - metabolism</topic><topic>Mass Spectrometry</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Microsomes - enzymology</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - chemistry</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Substrate Specificity - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benghezal, Mohammed</creatorcontrib><creatorcontrib>Roubaty, Carole</creatorcontrib><creatorcontrib>Veepuri, Vijayanath</creatorcontrib><creatorcontrib>Knudsen, Jens</creatorcontrib><creatorcontrib>Conzelmann, Andreas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benghezal, Mohammed</au><au>Roubaty, Carole</au><au>Veepuri, Vijayanath</au><au>Knudsen, Jens</au><au>Conzelmann, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SLC1 and SLC4 Encode Partially Redundant Acyl-Coenzyme A 1-Acylglycerol-3-phosphate O-Acyltransferases of Budding Yeast</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2007-10-19</date><risdate>2007</risdate><volume>282</volume><issue>42</issue><spage>30845</spage><epage>30855</epage><pages>30845-30855</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><notes>http://www.jbc.org/</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Phosphatidic acid is the intermediate, from which all glycerophospholipids are synthesized. In yeast, it is generated from lysophosphatidic acid, which is acylated by Slc1p, an sn-2-specific, acyl-coenzyme A-dependent 1-acylglycerol-3-phosphate O-acyltransferase. Deletion of SLC1 is not lethal and does not eliminate all microsomal 1-acylglycerol-3-phosphate O-acyltransferase activity, suggesting that an additional enzyme may exist. Here we show that SLC4 (Yor175c), a gene of hitherto unknown function, encodes a second 1-acyl-sn-glycerol-3-phosphate acyltransferase. SLC4 harbors a membrane-bound O-acyltransferase motif and down-regulation of SLC4 strongly reduces 1-acyl-sn-glycerol-3-phosphate acyltransferase activity in microsomes from slc1Δ cells. The simultaneous deletion of SLC1 and SLC4 is lethal. Mass spectrometric analysis of lipids from slc1Δ and slc4Δ cells demonstrates that in vivo Slc1p and Slc4p generate almost the same glycerophospholipid profile. Microsomes from slc1Δ and slc4Δ cells incubated with [14C]oleoyl-coenzyme A in the absence of lysophosphatidic acid and without CTP still incorporate the label into glycerophospholipids, indicating that Slc1p and Slc4p can also use endogenous lysoglycerophospholipids as substrates. However, the lipid profiles generated by microsomes from slc1Δ and slc4Δ cells are different, and this suggests that Slc1p and Slc4p have a different substrate specificity or have access to different lyso-glycerophospholipid substrates because of a different subcellular location. Indeed, affinity-purified Slc1p displays Mg2+-dependent acyltransferase activity not only toward lysophosphatidic acid but also lyso forms of phosphatidylserine and phosphatidylinositol. Thus, Slc1p and Slc4p may not only be active as 1-acylglycerol-3-phosphate O-acyltransferases but also be involved in fatty acid exchange at the sn-2-position of mature glycerophospholipids.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17675291</pmid><doi>10.1074/jbc.M702719200</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2007-10, Vol.282 (42), p.30845-30855
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_20309148
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS; Open Access: PubMed Central
subjects Acyl Coenzyme A - chemistry
Acyl Coenzyme A - genetics
Acyl Coenzyme A - metabolism
Acyltransferases - chemistry
Acyltransferases - genetics
Acyltransferases - metabolism
Amino Acid Motifs - physiology
Down-Regulation - physiology
Dyneins
Fatty Acids - chemistry
Fatty Acids - genetics
Fatty Acids - metabolism
Gene Deletion
Gene Expression Regulation, Enzymologic - physiology
Glycerophospholipids - biosynthesis
Glycerophospholipids - chemistry
Glycerophospholipids - genetics
Lipid Metabolism - physiology
Lysophospholipids - metabolism
Mass Spectrometry
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Microsomes - enzymology
Phosphotransferases (Alcohol Group Acceptor) - chemistry
Phosphotransferases (Alcohol Group Acceptor) - genetics
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Substrate Specificity - physiology
title SLC1 and SLC4 Encode Partially Redundant Acyl-Coenzyme A 1-Acylglycerol-3-phosphate O-Acyltransferases of Budding Yeast
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T03%3A34%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SLC1%20and%20SLC4%20Encode%20Partially%20Redundant%20Acyl-Coenzyme%20A%201-Acylglycerol-3-phosphate%20O-Acyltransferases%20of%20Budding%20Yeast&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Benghezal,%20Mohammed&rft.date=2007-10-19&rft.volume=282&rft.issue=42&rft.spage=30845&rft.epage=30855&rft.pages=30845-30855&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M702719200&rft_dat=%3Cproquest_cross%3E20309148%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-8ee41cb41af5ffa57bcb274fa0e29e5ad496ff052b77085953a4d54e0060d8a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20309148&rft_id=info:pmid/17675291&rfr_iscdi=true