Loading…

Model for tectonically driven incision of the younger than 6 Ma Grand Canyon

Accurate models for the incision of the Grand Canyon must include characterization of tectonic influences on incision dynamics such as active faulting and mantle to surface fluid interconnections. These young tectonic features support other geologic data that indicate that the Grand Canyon has been...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2008-11, Vol.36 (11), p.835-838
Main Authors: Karlstrom, Karl E, Crow, Ryan, Crossey, L. J, Coblentz, D, van Wijk, J. W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a346t-1b7fb987363a9113362275a2aa791d1191a67d4a8fb8aafa40d2aaf2a102078f3
cites cdi_FETCH-LOGICAL-a346t-1b7fb987363a9113362275a2aa791d1191a67d4a8fb8aafa40d2aaf2a102078f3
container_end_page 838
container_issue 11
container_start_page 835
container_title Geology (Boulder)
container_volume 36
creator Karlstrom, Karl E
Crow, Ryan
Crossey, L. J
Coblentz, D
van Wijk, J. W
description Accurate models for the incision of the Grand Canyon must include characterization of tectonic influences on incision dynamics such as active faulting and mantle to surface fluid interconnections. These young tectonic features support other geologic data that indicate that the Grand Canyon has been carved in the past 6 Ma. New U-Pb dates on speleothems are reinterpreted here in terms of improved geologic constraints and understanding of the modern aquifer. The combined data suggest that Grand Canyon incision rates have been relatively steady since 3-4 Ma. Differences in rates in the eastern (175-250 m/Ma) and western (50-80 m/Ma) Grand Canyon are explained by Neogene fault block uplift across the Toroweap-Hurricane system. Mantle tomography shows an abrupt step in mantle velocities near the Colorado Plateau edge, and geodynamic modeling suggests that upwelling asthenosphere is driving uplift of the Colorado Plateau margin relative to the Basin and Range. Our model for dynamic surface uplift in the past 6 Ma contrasts with the notion of passive incision of the Grand Canyon due solely to river integration and geomorphic response to base-level fall.
doi_str_mv 10.1130/G25032A.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20302076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1590052551</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-1b7fb987363a9113362275a2aa791d1191a67d4a8fb8aafa40d2aaf2a102078f3</originalsourceid><addsrcrecordid>eNpd0MFKAzEQBuAgCtbqwTcIHgSRrZlkm-weS9EqtHjR8zLdTdqUbVKTXaVvb0p7EE9zmI9_hp-QW2AjAMGeZnzMBJ-M4IwMoMxFxmXBz8mAsRIyJUFckqsYN4xBPlbFgMwXvtEtNT7QTtedd7bGtt3TJthv7ah1tY3WO-oN7daa7n3vVjrZNToq6QLpLKBr6BTd3rtrcmGwjfrmNIfk8-X5Y_qazd9nb9PJPEORyy6DpTLLslBCCizT10JyrsbIEVUJDUAJKFWTY2GWBaLBnDVpZzgC40wVRgzJ_TF3F_xXr2NXbW2sddui076PFWfiIGWCd__gxvfBpd-SASZFOp7QwxHVwccYtKl2wW4x7Ctg1aHU6lRqBck-Hu1K-1hb7Wr940Pb_M1lZZXqlaDEL66cdeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201063133</pqid></control><display><type>article</type><title>Model for tectonically driven incision of the younger than 6 Ma Grand Canyon</title><source>GeoScienceWorld</source><creator>Karlstrom, Karl E ; Crow, Ryan ; Crossey, L. J ; Coblentz, D ; van Wijk, J. W</creator><creatorcontrib>Karlstrom, Karl E ; Crow, Ryan ; Crossey, L. J ; Coblentz, D ; van Wijk, J. W</creatorcontrib><description>Accurate models for the incision of the Grand Canyon must include characterization of tectonic influences on incision dynamics such as active faulting and mantle to surface fluid interconnections. These young tectonic features support other geologic data that indicate that the Grand Canyon has been carved in the past 6 Ma. New U-Pb dates on speleothems are reinterpreted here in terms of improved geologic constraints and understanding of the modern aquifer. The combined data suggest that Grand Canyon incision rates have been relatively steady since 3-4 Ma. Differences in rates in the eastern (175-250 m/Ma) and western (50-80 m/Ma) Grand Canyon are explained by Neogene fault block uplift across the Toroweap-Hurricane system. Mantle tomography shows an abrupt step in mantle velocities near the Colorado Plateau edge, and geodynamic modeling suggests that upwelling asthenosphere is driving uplift of the Colorado Plateau margin relative to the Basin and Range. Our model for dynamic surface uplift in the past 6 Ma contrasts with the notion of passive incision of the Grand Canyon due solely to river integration and geomorphic response to base-level fall.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G25032A.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>active faults ; age ; aquifers ; Arizona ; Basin and Range Province ; canyons ; carbonate rocks ; Cenozoic ; Coconino County Arizona ; Colorado Plateau ; erosion features ; erosion rates ; faults ; geodynamics ; Geomorphology ; Grand Canyon ; Hurricane Fault ; incised valleys ; karst ; Neogene ; neotectonics ; North America ; Plate tectonics ; sedimentary rocks ; speleothems ; Structural geology ; tectonics ; Tertiary ; Tomography ; travertine ; U/Pb ; United States ; uplifts ; water table</subject><ispartof>Geology (Boulder), 2008-11, Vol.36 (11), p.835-838</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Nov 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-1b7fb987363a9113362275a2aa791d1191a67d4a8fb8aafa40d2aaf2a102078f3</citedby><cites>FETCH-LOGICAL-a346t-1b7fb987363a9113362275a2aa791d1191a67d4a8fb8aafa40d2aaf2a102078f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958,38916</link.rule.ids></links><search><creatorcontrib>Karlstrom, Karl E</creatorcontrib><creatorcontrib>Crow, Ryan</creatorcontrib><creatorcontrib>Crossey, L. J</creatorcontrib><creatorcontrib>Coblentz, D</creatorcontrib><creatorcontrib>van Wijk, J. W</creatorcontrib><title>Model for tectonically driven incision of the younger than 6 Ma Grand Canyon</title><title>Geology (Boulder)</title><description>Accurate models for the incision of the Grand Canyon must include characterization of tectonic influences on incision dynamics such as active faulting and mantle to surface fluid interconnections. These young tectonic features support other geologic data that indicate that the Grand Canyon has been carved in the past 6 Ma. New U-Pb dates on speleothems are reinterpreted here in terms of improved geologic constraints and understanding of the modern aquifer. The combined data suggest that Grand Canyon incision rates have been relatively steady since 3-4 Ma. Differences in rates in the eastern (175-250 m/Ma) and western (50-80 m/Ma) Grand Canyon are explained by Neogene fault block uplift across the Toroweap-Hurricane system. Mantle tomography shows an abrupt step in mantle velocities near the Colorado Plateau edge, and geodynamic modeling suggests that upwelling asthenosphere is driving uplift of the Colorado Plateau margin relative to the Basin and Range. Our model for dynamic surface uplift in the past 6 Ma contrasts with the notion of passive incision of the Grand Canyon due solely to river integration and geomorphic response to base-level fall.</description><subject>active faults</subject><subject>age</subject><subject>aquifers</subject><subject>Arizona</subject><subject>Basin and Range Province</subject><subject>canyons</subject><subject>carbonate rocks</subject><subject>Cenozoic</subject><subject>Coconino County Arizona</subject><subject>Colorado Plateau</subject><subject>erosion features</subject><subject>erosion rates</subject><subject>faults</subject><subject>geodynamics</subject><subject>Geomorphology</subject><subject>Grand Canyon</subject><subject>Hurricane Fault</subject><subject>incised valleys</subject><subject>karst</subject><subject>Neogene</subject><subject>neotectonics</subject><subject>North America</subject><subject>Plate tectonics</subject><subject>sedimentary rocks</subject><subject>speleothems</subject><subject>Structural geology</subject><subject>tectonics</subject><subject>Tertiary</subject><subject>Tomography</subject><subject>travertine</subject><subject>U/Pb</subject><subject>United States</subject><subject>uplifts</subject><subject>water table</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpd0MFKAzEQBuAgCtbqwTcIHgSRrZlkm-weS9EqtHjR8zLdTdqUbVKTXaVvb0p7EE9zmI9_hp-QW2AjAMGeZnzMBJ-M4IwMoMxFxmXBz8mAsRIyJUFckqsYN4xBPlbFgMwXvtEtNT7QTtedd7bGtt3TJthv7ah1tY3WO-oN7daa7n3vVjrZNToq6QLpLKBr6BTd3rtrcmGwjfrmNIfk8-X5Y_qazd9nb9PJPEORyy6DpTLLslBCCizT10JyrsbIEVUJDUAJKFWTY2GWBaLBnDVpZzgC40wVRgzJ_TF3F_xXr2NXbW2sddui076PFWfiIGWCd__gxvfBpd-SASZFOp7QwxHVwccYtKl2wW4x7Ctg1aHU6lRqBck-Hu1K-1hb7Wr940Pb_M1lZZXqlaDEL66cdeI</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Karlstrom, Karl E</creator><creator>Crow, Ryan</creator><creator>Crossey, L. J</creator><creator>Coblentz, D</creator><creator>van Wijk, J. W</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20081101</creationdate><title>Model for tectonically driven incision of the younger than 6 Ma Grand Canyon</title><author>Karlstrom, Karl E ; Crow, Ryan ; Crossey, L. J ; Coblentz, D ; van Wijk, J. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-1b7fb987363a9113362275a2aa791d1191a67d4a8fb8aafa40d2aaf2a102078f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>active faults</topic><topic>age</topic><topic>aquifers</topic><topic>Arizona</topic><topic>Basin and Range Province</topic><topic>canyons</topic><topic>carbonate rocks</topic><topic>Cenozoic</topic><topic>Coconino County Arizona</topic><topic>Colorado Plateau</topic><topic>erosion features</topic><topic>erosion rates</topic><topic>faults</topic><topic>geodynamics</topic><topic>Geomorphology</topic><topic>Grand Canyon</topic><topic>Hurricane Fault</topic><topic>incised valleys</topic><topic>karst</topic><topic>Neogene</topic><topic>neotectonics</topic><topic>North America</topic><topic>Plate tectonics</topic><topic>sedimentary rocks</topic><topic>speleothems</topic><topic>Structural geology</topic><topic>tectonics</topic><topic>Tertiary</topic><topic>Tomography</topic><topic>travertine</topic><topic>U/Pb</topic><topic>United States</topic><topic>uplifts</topic><topic>water table</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlstrom, Karl E</creatorcontrib><creatorcontrib>Crow, Ryan</creatorcontrib><creatorcontrib>Crossey, L. J</creatorcontrib><creatorcontrib>Coblentz, D</creatorcontrib><creatorcontrib>van Wijk, J. W</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlstrom, Karl E</au><au>Crow, Ryan</au><au>Crossey, L. J</au><au>Coblentz, D</au><au>van Wijk, J. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model for tectonically driven incision of the younger than 6 Ma Grand Canyon</atitle><jtitle>Geology (Boulder)</jtitle><date>2008-11-01</date><risdate>2008</risdate><volume>36</volume><issue>11</issue><spage>835</spage><epage>838</epage><pages>835-838</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Accurate models for the incision of the Grand Canyon must include characterization of tectonic influences on incision dynamics such as active faulting and mantle to surface fluid interconnections. These young tectonic features support other geologic data that indicate that the Grand Canyon has been carved in the past 6 Ma. New U-Pb dates on speleothems are reinterpreted here in terms of improved geologic constraints and understanding of the modern aquifer. The combined data suggest that Grand Canyon incision rates have been relatively steady since 3-4 Ma. Differences in rates in the eastern (175-250 m/Ma) and western (50-80 m/Ma) Grand Canyon are explained by Neogene fault block uplift across the Toroweap-Hurricane system. Mantle tomography shows an abrupt step in mantle velocities near the Colorado Plateau edge, and geodynamic modeling suggests that upwelling asthenosphere is driving uplift of the Colorado Plateau margin relative to the Basin and Range. Our model for dynamic surface uplift in the past 6 Ma contrasts with the notion of passive incision of the Grand Canyon due solely to river integration and geomorphic response to base-level fall.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G25032A.1</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0091-7613
ispartof Geology (Boulder), 2008-11, Vol.36 (11), p.835-838
issn 0091-7613
1943-2682
language eng
recordid cdi_proquest_miscellaneous_20302076
source GeoScienceWorld
subjects active faults
age
aquifers
Arizona
Basin and Range Province
canyons
carbonate rocks
Cenozoic
Coconino County Arizona
Colorado Plateau
erosion features
erosion rates
faults
geodynamics
Geomorphology
Grand Canyon
Hurricane Fault
incised valleys
karst
Neogene
neotectonics
North America
Plate tectonics
sedimentary rocks
speleothems
Structural geology
tectonics
Tertiary
Tomography
travertine
U/Pb
United States
uplifts
water table
title Model for tectonically driven incision of the younger than 6 Ma Grand Canyon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T06%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20for%20tectonically%20driven%20incision%20of%20the%20younger%20than%206%20Ma%20Grand%20Canyon&rft.jtitle=Geology%20(Boulder)&rft.au=Karlstrom,%20Karl%20E&rft.date=2008-11-01&rft.volume=36&rft.issue=11&rft.spage=835&rft.epage=838&rft.pages=835-838&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G25032A.1&rft_dat=%3Cproquest_cross%3E1590052551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a346t-1b7fb987363a9113362275a2aa791d1191a67d4a8fb8aafa40d2aaf2a102078f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201063133&rft_id=info:pmid/&rfr_iscdi=true