Loading…

Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices

The pH is fundamental to biological function and its measurement therefore crucial across all biosciences. Unlike homogenous bulk solution, solids often feature internal pH gradients due to partition effects and confined biochemical reactions. Thus, a full spatiotemporal mapping for pH characterizat...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2018-02, Vol.10 (8), p.6858-6868
Main Authors: Consolati, Tanja, Bolivar, Juan M, Petrasek, Zdenek, Berenguer, Jose, Hidalgo, Aurelio, Guisán, Jose M, Nidetzky, Bernd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a330t-3b9b2879bba1be9a5ea51f9c23b85fef8227065253eaa13148bdb855606430ee3
cites cdi_FETCH-LOGICAL-a330t-3b9b2879bba1be9a5ea51f9c23b85fef8227065253eaa13148bdb855606430ee3
container_end_page 6868
container_issue 8
container_start_page 6858
container_title ACS applied materials & interfaces
container_volume 10
creator Consolati, Tanja
Bolivar, Juan M
Petrasek, Zdenek
Berenguer, Jose
Hidalgo, Aurelio
Guisán, Jose M
Nidetzky, Bernd
description The pH is fundamental to biological function and its measurement therefore crucial across all biosciences. Unlike homogenous bulk solution, solids often feature internal pH gradients due to partition effects and confined biochemical reactions. Thus, a full spatiotemporal mapping for pH characterization in solid materials with biological systems embedded in them is essential. In here, therefore, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is presented. A genetically encoded ratiometric pH sensor, the enhanced superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of different materials, including natural and synthetic organic polymers as well as silica frameworks. By using controlled, tailor-made immobilization, sYFP is homogenously distributed within these materials and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. Evolution of internal pH is monitored in consequence of a proton-releasing enzymatic reaction, the hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix. Unlike optochemical pH sensors, which often interfere with biological function, labeling with sYFP enables pH sensing without altering the immobilized enzyme’s properties in any of the materials used. Fast response of sYFP to pH change permits evaluation of biochemical kinetics within the solid materials. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of biology confined to the internally heterogeneous environment of solid matrices.
doi_str_mv 10.1021/acsami.7b16639
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1993011432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993011432</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-3b9b2879bba1be9a5ea51f9c23b85fef8227065253eaa13148bdb855606430ee3</originalsourceid><addsrcrecordid>eNp1kU9P3DAQxa2qCLaUa4-VjxVqFv-Js3FvLSqw0iJW2nLgFI2TSWXkxKmdUMGn4aPi1S7cOFhjeX7znkePkC-czTkT_AzqCJ2dLwwvCqk_kBnXeZ6VQomPb_c8PyKfYrxnrJCCqUNyJLQsc6nUjDz_st5AxOY7XfYjhh6ce6TDVbbBPtrRPiC9hvRuwcUfdNl13lhnn7Chd-ic_08v3OQDxhr7ka6DH9H2FCKFnt4Mo63B0a2SD7RNZzPAaBPTDT6kzjUMg-3_Ut8mx-QfbYN07YOf4tY12BrjZ3LQJm882ddjcnvx-8_5Vba6uVye_1xlICUbM2m0EeVCGwPcoAaFoHirayFNqVpsSyEWrFBCSQTgkuelaVJHFazIJUOUx-TbTncI_t-Ecaw6m7ZyDnpM_6m41pJxnkuR0PkOrYOPMWBbDcF2EB4rzqptKtUulWqfShr4uteeTIfNG_4aQwJOd0AarO79tI0hvqf2AtCamik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993011432</pqid></control><display><type>article</type><title>Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Consolati, Tanja ; Bolivar, Juan M ; Petrasek, Zdenek ; Berenguer, Jose ; Hidalgo, Aurelio ; Guisán, Jose M ; Nidetzky, Bernd</creator><creatorcontrib>Consolati, Tanja ; Bolivar, Juan M ; Petrasek, Zdenek ; Berenguer, Jose ; Hidalgo, Aurelio ; Guisán, Jose M ; Nidetzky, Bernd</creatorcontrib><description>The pH is fundamental to biological function and its measurement therefore crucial across all biosciences. Unlike homogenous bulk solution, solids often feature internal pH gradients due to partition effects and confined biochemical reactions. Thus, a full spatiotemporal mapping for pH characterization in solid materials with biological systems embedded in them is essential. In here, therefore, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is presented. A genetically encoded ratiometric pH sensor, the enhanced superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of different materials, including natural and synthetic organic polymers as well as silica frameworks. By using controlled, tailor-made immobilization, sYFP is homogenously distributed within these materials and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. Evolution of internal pH is monitored in consequence of a proton-releasing enzymatic reaction, the hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix. Unlike optochemical pH sensors, which often interfere with biological function, labeling with sYFP enables pH sensing without altering the immobilized enzyme’s properties in any of the materials used. Fast response of sYFP to pH change permits evaluation of biochemical kinetics within the solid materials. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of biology confined to the internally heterogeneous environment of solid matrices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b16639</identifier><identifier>PMID: 29384355</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Coloring Agents ; Enzymes, Immobilized ; Hydrogen-Ion Concentration ; Hydrolysis ; Luminescent Proteins - analysis ; Porosity</subject><ispartof>ACS applied materials &amp; interfaces, 2018-02, Vol.10 (8), p.6858-6868</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-3b9b2879bba1be9a5ea51f9c23b85fef8227065253eaa13148bdb855606430ee3</citedby><cites>FETCH-LOGICAL-a330t-3b9b2879bba1be9a5ea51f9c23b85fef8227065253eaa13148bdb855606430ee3</cites><orcidid>0000-0002-5030-2643 ; 0000-0003-1627-6522 ; 0000-0001-6719-5082 ; 0000-0002-4930-1635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29384355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Consolati, Tanja</creatorcontrib><creatorcontrib>Bolivar, Juan M</creatorcontrib><creatorcontrib>Petrasek, Zdenek</creatorcontrib><creatorcontrib>Berenguer, Jose</creatorcontrib><creatorcontrib>Hidalgo, Aurelio</creatorcontrib><creatorcontrib>Guisán, Jose M</creatorcontrib><creatorcontrib>Nidetzky, Bernd</creatorcontrib><title>Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The pH is fundamental to biological function and its measurement therefore crucial across all biosciences. Unlike homogenous bulk solution, solids often feature internal pH gradients due to partition effects and confined biochemical reactions. Thus, a full spatiotemporal mapping for pH characterization in solid materials with biological systems embedded in them is essential. In here, therefore, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is presented. A genetically encoded ratiometric pH sensor, the enhanced superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of different materials, including natural and synthetic organic polymers as well as silica frameworks. By using controlled, tailor-made immobilization, sYFP is homogenously distributed within these materials and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. Evolution of internal pH is monitored in consequence of a proton-releasing enzymatic reaction, the hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix. Unlike optochemical pH sensors, which often interfere with biological function, labeling with sYFP enables pH sensing without altering the immobilized enzyme’s properties in any of the materials used. Fast response of sYFP to pH change permits evaluation of biochemical kinetics within the solid materials. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of biology confined to the internally heterogeneous environment of solid matrices.</description><subject>Coloring Agents</subject><subject>Enzymes, Immobilized</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Luminescent Proteins - analysis</subject><subject>Porosity</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU9P3DAQxa2qCLaUa4-VjxVqFv-Js3FvLSqw0iJW2nLgFI2TSWXkxKmdUMGn4aPi1S7cOFhjeX7znkePkC-czTkT_AzqCJ2dLwwvCqk_kBnXeZ6VQomPb_c8PyKfYrxnrJCCqUNyJLQsc6nUjDz_st5AxOY7XfYjhh6ce6TDVbbBPtrRPiC9hvRuwcUfdNl13lhnn7Chd-ic_08v3OQDxhr7ka6DH9H2FCKFnt4Mo63B0a2SD7RNZzPAaBPTDT6kzjUMg-3_Ut8mx-QfbYN07YOf4tY12BrjZ3LQJm882ddjcnvx-8_5Vba6uVye_1xlICUbM2m0EeVCGwPcoAaFoHirayFNqVpsSyEWrFBCSQTgkuelaVJHFazIJUOUx-TbTncI_t-Ecaw6m7ZyDnpM_6m41pJxnkuR0PkOrYOPMWBbDcF2EB4rzqptKtUulWqfShr4uteeTIfNG_4aQwJOd0AarO79tI0hvqf2AtCamik</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Consolati, Tanja</creator><creator>Bolivar, Juan M</creator><creator>Petrasek, Zdenek</creator><creator>Berenguer, Jose</creator><creator>Hidalgo, Aurelio</creator><creator>Guisán, Jose M</creator><creator>Nidetzky, Bernd</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5030-2643</orcidid><orcidid>https://orcid.org/0000-0003-1627-6522</orcidid><orcidid>https://orcid.org/0000-0001-6719-5082</orcidid><orcidid>https://orcid.org/0000-0002-4930-1635</orcidid></search><sort><creationdate>20180228</creationdate><title>Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices</title><author>Consolati, Tanja ; Bolivar, Juan M ; Petrasek, Zdenek ; Berenguer, Jose ; Hidalgo, Aurelio ; Guisán, Jose M ; Nidetzky, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-3b9b2879bba1be9a5ea51f9c23b85fef8227065253eaa13148bdb855606430ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coloring Agents</topic><topic>Enzymes, Immobilized</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Luminescent Proteins - analysis</topic><topic>Porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Consolati, Tanja</creatorcontrib><creatorcontrib>Bolivar, Juan M</creatorcontrib><creatorcontrib>Petrasek, Zdenek</creatorcontrib><creatorcontrib>Berenguer, Jose</creatorcontrib><creatorcontrib>Hidalgo, Aurelio</creatorcontrib><creatorcontrib>Guisán, Jose M</creatorcontrib><creatorcontrib>Nidetzky, Bernd</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Consolati, Tanja</au><au>Bolivar, Juan M</au><au>Petrasek, Zdenek</au><au>Berenguer, Jose</au><au>Hidalgo, Aurelio</au><au>Guisán, Jose M</au><au>Nidetzky, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-02-28</date><risdate>2018</risdate><volume>10</volume><issue>8</issue><spage>6858</spage><epage>6868</epage><pages>6858-6868</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>The pH is fundamental to biological function and its measurement therefore crucial across all biosciences. Unlike homogenous bulk solution, solids often feature internal pH gradients due to partition effects and confined biochemical reactions. Thus, a full spatiotemporal mapping for pH characterization in solid materials with biological systems embedded in them is essential. In here, therefore, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is presented. A genetically encoded ratiometric pH sensor, the enhanced superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of different materials, including natural and synthetic organic polymers as well as silica frameworks. By using controlled, tailor-made immobilization, sYFP is homogenously distributed within these materials and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. Evolution of internal pH is monitored in consequence of a proton-releasing enzymatic reaction, the hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix. Unlike optochemical pH sensors, which often interfere with biological function, labeling with sYFP enables pH sensing without altering the immobilized enzyme’s properties in any of the materials used. Fast response of sYFP to pH change permits evaluation of biochemical kinetics within the solid materials. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of biology confined to the internally heterogeneous environment of solid matrices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29384355</pmid><doi>10.1021/acsami.7b16639</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5030-2643</orcidid><orcidid>https://orcid.org/0000-0003-1627-6522</orcidid><orcidid>https://orcid.org/0000-0001-6719-5082</orcidid><orcidid>https://orcid.org/0000-0002-4930-1635</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-02, Vol.10 (8), p.6858-6868
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1993011432
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Coloring Agents
Enzymes, Immobilized
Hydrogen-Ion Concentration
Hydrolysis
Luminescent Proteins - analysis
Porosity
title Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T17%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biobased,%20Internally%20pH-Sensitive%20Materials:%20Immobilized%20Yellow%20Fluorescent%20Protein%20as%20an%20Optical%20Sensor%20for%20Spatiotemporal%20Mapping%20of%20pH%20Inside%20Porous%20Matrices&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Consolati,%20Tanja&rft.date=2018-02-28&rft.volume=10&rft.issue=8&rft.spage=6858&rft.epage=6868&rft.pages=6858-6868&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b16639&rft_dat=%3Cproquest_cross%3E1993011432%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-3b9b2879bba1be9a5ea51f9c23b85fef8227065253eaa13148bdb855606430ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1993011432&rft_id=info:pmid/29384355&rfr_iscdi=true