Loading…

Human cytosolic enzymes involved in the metabolic activation of carcinogenic aristolochic acid: evidence for reductive activation by human NAD(P)H:quinone oxidoreductase

Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, has been associated with the development of urothelial cancer in humans. Understanding which human enzymes are involved in AA metabolism is important in the assessment of an individual's susceptibility to this carcinogen....

Full description

Saved in:
Bibliographic Details
Published in:Carcinogenesis (New York) 2003-10, Vol.24 (10), p.1695-1703
Main Authors: Stiborová, Marie, Frei, Eva, Sopko, Bruno, Sopková, Klára, Marková, Vladimíra, Laňková, Martina, Kumstýřová, Tereza, Wiessler, Manfred, Schmeiser, Heinz H.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c520t-edf4f32af964adf317dd416b28e75e272f16aafcb4ec5057a9d5cf23465c8fbb3
cites
container_end_page 1703
container_issue 10
container_start_page 1695
container_title Carcinogenesis (New York)
container_volume 24
creator Stiborová, Marie
Frei, Eva
Sopko, Bruno
Sopková, Klára
Marková, Vladimíra
Laňková, Martina
Kumstýřová, Tereza
Wiessler, Manfred
Schmeiser, Heinz H.
description Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, has been associated with the development of urothelial cancer in humans. Understanding which human enzymes are involved in AA metabolism is important in the assessment of an individual's susceptibility to this carcinogen. Using the 32P-postlabeling assay we examined the ability of enzymes of cytosolic samples from 10 different human livers and from one human kidney to activate the major component of the plant extract AA, 8-methoxy- 6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAI), to metabolites forming adducts in DNA. Cytosolic fractions of both organs generated AAI–DNA adduct patterns reproducing those found in renal tissues from humans exposed to AA. 7-(Deoxyadenosin-N6-yl)aristolactam I, 7-(deoxyguanosin-N2-yl)aristolactam I and 7-(deoxyadenosin-N6-yl)aristolactam II, indicating a possible demethoxylation reaction of AAI, were identified as AA–DNA adducts formed from AAI by all human hepatic and renal cytosols. To define the role of human cytosolic reductases in the activation of AAI, we investigated the modulation of AAI–DNA adduct formation by cofactors or selective inhibitors of the NAD(P)H:quinone oxidoreductase (NQO1), xanthine oxidase (XO) and aldehyde oxidase. We also determined whether the activities of NQO1 and XO in different human hepatic cytosolic samples correlated with the levels of AAI–DNA adducts formed by the same cytosolic samples. Based on these studies, we attribute most of the activation of AA in human cytosols to NQO1, although a role of cytosolic XO cannot be ruled out. With purified NQO1 from rat liver and kidney and XO from buttermilk, the major role of NQO1 in the formation of AAI–DNA adducts was confirmed. The orientation of AAI in the active site of human NQO1 was predicted from molecular modeling based on published X-ray structures. The results demonstrate for the first time the potential of human NQO1 to activate AAI by nitroreduction.
doi_str_mv 10.1093/carcin/bgg119
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19880618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>423549981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-edf4f32af964adf317dd416b28e75e272f16aafcb4ec5057a9d5cf23465c8fbb3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhyBVZSCA4hPojcZLeqgW6VBUfEqCKi-XY412XxG7tZNXlH_EvyW5WLOI0I80z77yaF6GnlLyhpOYnWkXt_EmzXFJa30MzmguSMVqR-2hGaM4zznl-hB6ldE0IFbyoH6IjyipR54zN0O_F0CmP9aYPKbROY_C_Nh0k7Pw6tGswY4P7FeAOetXsCKV7t1a9Cx4Hi6f7YQl-O4ou9aENerXjnDnFsHYGvAZsQ8QRzLDdhn9Fmg1e7Ux8PHv76vPrxentMAp6wOHOmTCtqASP0QOr2gRP9vUYfXv_7ut8kV1-Ov8wP7vMdMFIn4GxueVM2VrkylhOS2NyKhpWQVkAK5mlQimrmxx0QYpS1abQlvFcFLqyTcOP0ctJ9yaG2wFSLzuXNLSt8hCGJGldVUTQagSf_wdehyH60ZtktOZlTaotlE2QjiGlCFbeRNepuJGUyG2AcnqgnAIc-Wd70aHpwBzofWIj8GIPqKRVa6Py2qUDV9BaUMEOh8dE4O7vXMWfUpS8LOTi6oe8uijO5_zLhfzO_wBDx7lt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219379088</pqid></control><display><type>article</type><title>Human cytosolic enzymes involved in the metabolic activation of carcinogenic aristolochic acid: evidence for reductive activation by human NAD(P)H:quinone oxidoreductase</title><source>Oxford Journals</source><creator>Stiborová, Marie ; Frei, Eva ; Sopko, Bruno ; Sopková, Klára ; Marková, Vladimíra ; Laňková, Martina ; Kumstýřová, Tereza ; Wiessler, Manfred ; Schmeiser, Heinz H.</creator><creatorcontrib>Stiborová, Marie ; Frei, Eva ; Sopko, Bruno ; Sopková, Klára ; Marková, Vladimíra ; Laňková, Martina ; Kumstýřová, Tereza ; Wiessler, Manfred ; Schmeiser, Heinz H.</creatorcontrib><description>Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, has been associated with the development of urothelial cancer in humans. Understanding which human enzymes are involved in AA metabolism is important in the assessment of an individual's susceptibility to this carcinogen. Using the 32P-postlabeling assay we examined the ability of enzymes of cytosolic samples from 10 different human livers and from one human kidney to activate the major component of the plant extract AA, 8-methoxy- 6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAI), to metabolites forming adducts in DNA. Cytosolic fractions of both organs generated AAI–DNA adduct patterns reproducing those found in renal tissues from humans exposed to AA. 7-(Deoxyadenosin-N6-yl)aristolactam I, 7-(deoxyguanosin-N2-yl)aristolactam I and 7-(deoxyadenosin-N6-yl)aristolactam II, indicating a possible demethoxylation reaction of AAI, were identified as AA–DNA adducts formed from AAI by all human hepatic and renal cytosols. To define the role of human cytosolic reductases in the activation of AAI, we investigated the modulation of AAI–DNA adduct formation by cofactors or selective inhibitors of the NAD(P)H:quinone oxidoreductase (NQO1), xanthine oxidase (XO) and aldehyde oxidase. We also determined whether the activities of NQO1 and XO in different human hepatic cytosolic samples correlated with the levels of AAI–DNA adducts formed by the same cytosolic samples. Based on these studies, we attribute most of the activation of AA in human cytosols to NQO1, although a role of cytosolic XO cannot be ruled out. With purified NQO1 from rat liver and kidney and XO from buttermilk, the major role of NQO1 in the formation of AAI–DNA adducts was confirmed. The orientation of AAI in the active site of human NQO1 was predicted from molecular modeling based on published X-ray structures. The results demonstrate for the first time the potential of human NQO1 to activate AAI by nitroreduction.</description><identifier>ISSN: 0143-3334</identifier><identifier>ISSN: 1460-2180</identifier><identifier>EISSN: 1460-2180</identifier><identifier>DOI: 10.1093/carcin/bgg119</identifier><identifier>PMID: 12869422</identifier><identifier>CODEN: CRNGDP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>3-dioxolo-5-carboxylic acid ; 4-d)-1 ; 6-nitro-phenanthro- ; 7-(deoxyadenosin-N6-yl)aristolactam I ; 7-(deoxyadenosin-N6-yl)aristolactam II ; 7-(deoxyguanosin-N2-yl) aristolactam I ; 7-(deoxyguanosin-N2-yl) aristolactam II ; 8-methoxy-6-nitro-phenanthro- ; AAI ; AAII ; AAN ; Aldehyde Oxidase - metabolism ; Animals ; aristolochic acid ; aristolochic acid nephropathy ; Aristolochic Acids - chemistry ; Aristolochic Acids - metabolism ; Aristolochic Acids - pharmacokinetics ; Biological and medical sciences ; Biotransformation ; Carcinogenesis, carcinogens and anticarcinogens ; Carcinogens - chemistry ; Carcinogens - metabolism ; Carcinogens - pharmacokinetics ; Chemical agents ; Chromatography, High Pressure Liquid ; Cytosol - enzymology ; dA–AAI ; dA–AAII ; dG–AAI ; dG–AAII ; DNA Adducts - analysis ; Enzyme Inhibitors - metabolism ; Humans ; Kidney - enzymology ; Liver - enzymology ; Male ; Medical sciences ; Models, Molecular ; NAD(P)H Dehydrogenase (Quinone) - analysis ; NAD(P)H Dehydrogenase (Quinone) - antagonists &amp; inhibitors ; NAD(P)H Dehydrogenase (Quinone) - metabolism ; NAD(P)H:quinone oxidoreductase ; NQO1 ; polyethylenimine ; Rats ; Rats, Wistar ; Tumors ; xanthine oxidase ; Xanthine Oxidase - analysis ; Xanthine Oxidase - antagonists &amp; inhibitors ; Xanthine Oxidase - metabolism</subject><ispartof>Carcinogenesis (New York), 2003-10, Vol.24 (10), p.1695-1703</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Oct 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-edf4f32af964adf317dd416b28e75e272f16aafcb4ec5057a9d5cf23465c8fbb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27937,27938</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15196162$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12869422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stiborová, Marie</creatorcontrib><creatorcontrib>Frei, Eva</creatorcontrib><creatorcontrib>Sopko, Bruno</creatorcontrib><creatorcontrib>Sopková, Klára</creatorcontrib><creatorcontrib>Marková, Vladimíra</creatorcontrib><creatorcontrib>Laňková, Martina</creatorcontrib><creatorcontrib>Kumstýřová, Tereza</creatorcontrib><creatorcontrib>Wiessler, Manfred</creatorcontrib><creatorcontrib>Schmeiser, Heinz H.</creatorcontrib><title>Human cytosolic enzymes involved in the metabolic activation of carcinogenic aristolochic acid: evidence for reductive activation by human NAD(P)H:quinone oxidoreductase</title><title>Carcinogenesis (New York)</title><addtitle>Carcinogenesis</addtitle><description>Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, has been associated with the development of urothelial cancer in humans. Understanding which human enzymes are involved in AA metabolism is important in the assessment of an individual's susceptibility to this carcinogen. Using the 32P-postlabeling assay we examined the ability of enzymes of cytosolic samples from 10 different human livers and from one human kidney to activate the major component of the plant extract AA, 8-methoxy- 6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAI), to metabolites forming adducts in DNA. Cytosolic fractions of both organs generated AAI–DNA adduct patterns reproducing those found in renal tissues from humans exposed to AA. 7-(Deoxyadenosin-N6-yl)aristolactam I, 7-(deoxyguanosin-N2-yl)aristolactam I and 7-(deoxyadenosin-N6-yl)aristolactam II, indicating a possible demethoxylation reaction of AAI, were identified as AA–DNA adducts formed from AAI by all human hepatic and renal cytosols. To define the role of human cytosolic reductases in the activation of AAI, we investigated the modulation of AAI–DNA adduct formation by cofactors or selective inhibitors of the NAD(P)H:quinone oxidoreductase (NQO1), xanthine oxidase (XO) and aldehyde oxidase. We also determined whether the activities of NQO1 and XO in different human hepatic cytosolic samples correlated with the levels of AAI–DNA adducts formed by the same cytosolic samples. Based on these studies, we attribute most of the activation of AA in human cytosols to NQO1, although a role of cytosolic XO cannot be ruled out. With purified NQO1 from rat liver and kidney and XO from buttermilk, the major role of NQO1 in the formation of AAI–DNA adducts was confirmed. The orientation of AAI in the active site of human NQO1 was predicted from molecular modeling based on published X-ray structures. The results demonstrate for the first time the potential of human NQO1 to activate AAI by nitroreduction.</description><subject>3-dioxolo-5-carboxylic acid</subject><subject>4-d)-1</subject><subject>6-nitro-phenanthro-</subject><subject>7-(deoxyadenosin-N6-yl)aristolactam I</subject><subject>7-(deoxyadenosin-N6-yl)aristolactam II</subject><subject>7-(deoxyguanosin-N2-yl) aristolactam I</subject><subject>7-(deoxyguanosin-N2-yl) aristolactam II</subject><subject>8-methoxy-6-nitro-phenanthro-</subject><subject>AAI</subject><subject>AAII</subject><subject>AAN</subject><subject>Aldehyde Oxidase - metabolism</subject><subject>Animals</subject><subject>aristolochic acid</subject><subject>aristolochic acid nephropathy</subject><subject>Aristolochic Acids - chemistry</subject><subject>Aristolochic Acids - metabolism</subject><subject>Aristolochic Acids - pharmacokinetics</subject><subject>Biological and medical sciences</subject><subject>Biotransformation</subject><subject>Carcinogenesis, carcinogens and anticarcinogens</subject><subject>Carcinogens - chemistry</subject><subject>Carcinogens - metabolism</subject><subject>Carcinogens - pharmacokinetics</subject><subject>Chemical agents</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Cytosol - enzymology</subject><subject>dA–AAI</subject><subject>dA–AAII</subject><subject>dG–AAI</subject><subject>dG–AAII</subject><subject>DNA Adducts - analysis</subject><subject>Enzyme Inhibitors - metabolism</subject><subject>Humans</subject><subject>Kidney - enzymology</subject><subject>Liver - enzymology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Models, Molecular</subject><subject>NAD(P)H Dehydrogenase (Quinone) - analysis</subject><subject>NAD(P)H Dehydrogenase (Quinone) - antagonists &amp; inhibitors</subject><subject>NAD(P)H Dehydrogenase (Quinone) - metabolism</subject><subject>NAD(P)H:quinone oxidoreductase</subject><subject>NQO1</subject><subject>polyethylenimine</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Tumors</subject><subject>xanthine oxidase</subject><subject>Xanthine Oxidase - analysis</subject><subject>Xanthine Oxidase - antagonists &amp; inhibitors</subject><subject>Xanthine Oxidase - metabolism</subject><issn>0143-3334</issn><issn>1460-2180</issn><issn>1460-2180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi0EokvhyBVZSCA4hPojcZLeqgW6VBUfEqCKi-XY412XxG7tZNXlH_EvyW5WLOI0I80z77yaF6GnlLyhpOYnWkXt_EmzXFJa30MzmguSMVqR-2hGaM4zznl-hB6ldE0IFbyoH6IjyipR54zN0O_F0CmP9aYPKbROY_C_Nh0k7Pw6tGswY4P7FeAOetXsCKV7t1a9Cx4Hi6f7YQl-O4ou9aENerXjnDnFsHYGvAZsQ8QRzLDdhn9Fmg1e7Ux8PHv76vPrxentMAp6wOHOmTCtqASP0QOr2gRP9vUYfXv_7ut8kV1-Ov8wP7vMdMFIn4GxueVM2VrkylhOS2NyKhpWQVkAK5mlQimrmxx0QYpS1abQlvFcFLqyTcOP0ctJ9yaG2wFSLzuXNLSt8hCGJGldVUTQagSf_wdehyH60ZtktOZlTaotlE2QjiGlCFbeRNepuJGUyG2AcnqgnAIc-Wd70aHpwBzofWIj8GIPqKRVa6Py2qUDV9BaUMEOh8dE4O7vXMWfUpS8LOTi6oe8uijO5_zLhfzO_wBDx7lt</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Stiborová, Marie</creator><creator>Frei, Eva</creator><creator>Sopko, Bruno</creator><creator>Sopková, Klára</creator><creator>Marková, Vladimíra</creator><creator>Laňková, Martina</creator><creator>Kumstýřová, Tereza</creator><creator>Wiessler, Manfred</creator><creator>Schmeiser, Heinz H.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20031001</creationdate><title>Human cytosolic enzymes involved in the metabolic activation of carcinogenic aristolochic acid: evidence for reductive activation by human NAD(P)H:quinone oxidoreductase</title><author>Stiborová, Marie ; Frei, Eva ; Sopko, Bruno ; Sopková, Klára ; Marková, Vladimíra ; Laňková, Martina ; Kumstýřová, Tereza ; Wiessler, Manfred ; Schmeiser, Heinz H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-edf4f32af964adf317dd416b28e75e272f16aafcb4ec5057a9d5cf23465c8fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>3-dioxolo-5-carboxylic acid</topic><topic>4-d)-1</topic><topic>6-nitro-phenanthro-</topic><topic>7-(deoxyadenosin-N6-yl)aristolactam I</topic><topic>7-(deoxyadenosin-N6-yl)aristolactam II</topic><topic>7-(deoxyguanosin-N2-yl) aristolactam I</topic><topic>7-(deoxyguanosin-N2-yl) aristolactam II</topic><topic>8-methoxy-6-nitro-phenanthro-</topic><topic>AAI</topic><topic>AAII</topic><topic>AAN</topic><topic>Aldehyde Oxidase - metabolism</topic><topic>Animals</topic><topic>aristolochic acid</topic><topic>aristolochic acid nephropathy</topic><topic>Aristolochic Acids - chemistry</topic><topic>Aristolochic Acids - metabolism</topic><topic>Aristolochic Acids - pharmacokinetics</topic><topic>Biological and medical sciences</topic><topic>Biotransformation</topic><topic>Carcinogenesis, carcinogens and anticarcinogens</topic><topic>Carcinogens - chemistry</topic><topic>Carcinogens - metabolism</topic><topic>Carcinogens - pharmacokinetics</topic><topic>Chemical agents</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Cytosol - enzymology</topic><topic>dA–AAI</topic><topic>dA–AAII</topic><topic>dG–AAI</topic><topic>dG–AAII</topic><topic>DNA Adducts - analysis</topic><topic>Enzyme Inhibitors - metabolism</topic><topic>Humans</topic><topic>Kidney - enzymology</topic><topic>Liver - enzymology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Models, Molecular</topic><topic>NAD(P)H Dehydrogenase (Quinone) - analysis</topic><topic>NAD(P)H Dehydrogenase (Quinone) - antagonists &amp; inhibitors</topic><topic>NAD(P)H Dehydrogenase (Quinone) - metabolism</topic><topic>NAD(P)H:quinone oxidoreductase</topic><topic>NQO1</topic><topic>polyethylenimine</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Tumors</topic><topic>xanthine oxidase</topic><topic>Xanthine Oxidase - analysis</topic><topic>Xanthine Oxidase - antagonists &amp; inhibitors</topic><topic>Xanthine Oxidase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stiborová, Marie</creatorcontrib><creatorcontrib>Frei, Eva</creatorcontrib><creatorcontrib>Sopko, Bruno</creatorcontrib><creatorcontrib>Sopková, Klára</creatorcontrib><creatorcontrib>Marková, Vladimíra</creatorcontrib><creatorcontrib>Laňková, Martina</creatorcontrib><creatorcontrib>Kumstýřová, Tereza</creatorcontrib><creatorcontrib>Wiessler, Manfred</creatorcontrib><creatorcontrib>Schmeiser, Heinz H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Carcinogenesis (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stiborová, Marie</au><au>Frei, Eva</au><au>Sopko, Bruno</au><au>Sopková, Klára</au><au>Marková, Vladimíra</au><au>Laňková, Martina</au><au>Kumstýřová, Tereza</au><au>Wiessler, Manfred</au><au>Schmeiser, Heinz H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human cytosolic enzymes involved in the metabolic activation of carcinogenic aristolochic acid: evidence for reductive activation by human NAD(P)H:quinone oxidoreductase</atitle><jtitle>Carcinogenesis (New York)</jtitle><addtitle>Carcinogenesis</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>24</volume><issue>10</issue><spage>1695</spage><epage>1703</epage><pages>1695-1703</pages><issn>0143-3334</issn><issn>1460-2180</issn><eissn>1460-2180</eissn><coden>CRNGDP</coden><abstract>Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, has been associated with the development of urothelial cancer in humans. Understanding which human enzymes are involved in AA metabolism is important in the assessment of an individual's susceptibility to this carcinogen. Using the 32P-postlabeling assay we examined the ability of enzymes of cytosolic samples from 10 different human livers and from one human kidney to activate the major component of the plant extract AA, 8-methoxy- 6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAI), to metabolites forming adducts in DNA. Cytosolic fractions of both organs generated AAI–DNA adduct patterns reproducing those found in renal tissues from humans exposed to AA. 7-(Deoxyadenosin-N6-yl)aristolactam I, 7-(deoxyguanosin-N2-yl)aristolactam I and 7-(deoxyadenosin-N6-yl)aristolactam II, indicating a possible demethoxylation reaction of AAI, were identified as AA–DNA adducts formed from AAI by all human hepatic and renal cytosols. To define the role of human cytosolic reductases in the activation of AAI, we investigated the modulation of AAI–DNA adduct formation by cofactors or selective inhibitors of the NAD(P)H:quinone oxidoreductase (NQO1), xanthine oxidase (XO) and aldehyde oxidase. We also determined whether the activities of NQO1 and XO in different human hepatic cytosolic samples correlated with the levels of AAI–DNA adducts formed by the same cytosolic samples. Based on these studies, we attribute most of the activation of AA in human cytosols to NQO1, although a role of cytosolic XO cannot be ruled out. With purified NQO1 from rat liver and kidney and XO from buttermilk, the major role of NQO1 in the formation of AAI–DNA adducts was confirmed. The orientation of AAI in the active site of human NQO1 was predicted from molecular modeling based on published X-ray structures. The results demonstrate for the first time the potential of human NQO1 to activate AAI by nitroreduction.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>12869422</pmid><doi>10.1093/carcin/bgg119</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-3334
ispartof Carcinogenesis (New York), 2003-10, Vol.24 (10), p.1695-1703
issn 0143-3334
1460-2180
1460-2180
language eng
recordid cdi_proquest_miscellaneous_19880618
source Oxford Journals
subjects 3-dioxolo-5-carboxylic acid
4-d)-1
6-nitro-phenanthro-
7-(deoxyadenosin-N6-yl)aristolactam I
7-(deoxyadenosin-N6-yl)aristolactam II
7-(deoxyguanosin-N2-yl) aristolactam I
7-(deoxyguanosin-N2-yl) aristolactam II
8-methoxy-6-nitro-phenanthro-
AAI
AAII
AAN
Aldehyde Oxidase - metabolism
Animals
aristolochic acid
aristolochic acid nephropathy
Aristolochic Acids - chemistry
Aristolochic Acids - metabolism
Aristolochic Acids - pharmacokinetics
Biological and medical sciences
Biotransformation
Carcinogenesis, carcinogens and anticarcinogens
Carcinogens - chemistry
Carcinogens - metabolism
Carcinogens - pharmacokinetics
Chemical agents
Chromatography, High Pressure Liquid
Cytosol - enzymology
dA–AAI
dA–AAII
dG–AAI
dG–AAII
DNA Adducts - analysis
Enzyme Inhibitors - metabolism
Humans
Kidney - enzymology
Liver - enzymology
Male
Medical sciences
Models, Molecular
NAD(P)H Dehydrogenase (Quinone) - analysis
NAD(P)H Dehydrogenase (Quinone) - antagonists & inhibitors
NAD(P)H Dehydrogenase (Quinone) - metabolism
NAD(P)H:quinone oxidoreductase
NQO1
polyethylenimine
Rats
Rats, Wistar
Tumors
xanthine oxidase
Xanthine Oxidase - analysis
Xanthine Oxidase - antagonists & inhibitors
Xanthine Oxidase - metabolism
title Human cytosolic enzymes involved in the metabolic activation of carcinogenic aristolochic acid: evidence for reductive activation by human NAD(P)H:quinone oxidoreductase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-11T10%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20cytosolic%20enzymes%20involved%20in%20the%20metabolic%20activation%20of%20carcinogenic%20aristolochic%20acid:%20evidence%20for%20reductive%20activation%20by%20human%20NAD(P)H:quinone%20oxidoreductase&rft.jtitle=Carcinogenesis%20(New%20York)&rft.au=Stiborova%CC%81,%20Marie&rft.date=2003-10-01&rft.volume=24&rft.issue=10&rft.spage=1695&rft.epage=1703&rft.pages=1695-1703&rft.issn=0143-3334&rft.eissn=1460-2180&rft.coden=CRNGDP&rft_id=info:doi/10.1093/carcin/bgg119&rft_dat=%3Cproquest_cross%3E423549981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-edf4f32af964adf317dd416b28e75e272f16aafcb4ec5057a9d5cf23465c8fbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=219379088&rft_id=info:pmid/12869422&rfr_iscdi=true