Loading…

Crack-Enhanced Microfluidic Stretchable E‑Skin Sensor

We reported the development of a transparent stretchable crack-enhanced microfluidic capacitive sensor array for use in E-skin applications. The microfluidic sensor was fabricated through a simple lamination process involving two silver nanowire (AgNW)-embedded rubbery microfluidic channels arranged...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2017-12, Vol.9 (51), p.44678-44686
Main Authors: Ho, Dong Hae, Song, Ryungeun, Sun, Qijun, Park, Won-Hyeong, Kim, So Young, Pang, Changhyun, Kim, Do Hwan, Kim, Sang-Youn, Lee, Jinkee, Cho, Jeong Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a396t-e26df862494e8cf02aaf92ed919a5732e567f5907330033e5a10dff69c79fe1f3
cites cdi_FETCH-LOGICAL-a396t-e26df862494e8cf02aaf92ed919a5732e567f5907330033e5a10dff69c79fe1f3
container_end_page 44686
container_issue 51
container_start_page 44678
container_title ACS applied materials & interfaces
container_volume 9
creator Ho, Dong Hae
Song, Ryungeun
Sun, Qijun
Park, Won-Hyeong
Kim, So Young
Pang, Changhyun
Kim, Do Hwan
Kim, Sang-Youn
Lee, Jinkee
Cho, Jeong Ho
description We reported the development of a transparent stretchable crack-enhanced microfluidic capacitive sensor array for use in E-skin applications. The microfluidic sensor was fabricated through a simple lamination process involving two silver nanowire (AgNW)-embedded rubbery microfluidic channels arranged in a crisscross fashion. The sensing performance was optimized by testing a variety of sensing liquids injected into the channels. External mechanical stimuli applied to the sensor induced the liquid to penetrate the deformed microcracks on the rubber channel surface. The increased interfacial contact area between the liquid and the nanowire electrodes increased the capacitance of the sensor. The device sensitivity was strongly related to both the initial fluid interface between the liquid and crack wall and the change in the contact length of the liquid and crack wall, which were simulated using the finite element method. The microfluidic sensor was shown to detect a wide range of pressures, 0.1–140 kPa. Ordinary human motions, including substantial as well as slight muscle movements, could be successively detected, and 2D color mappings of simultaneous external load sensing were collected. Our simple method of fabricating the microfluidic channels and the application of these channels to stretchable e-skin sensors offers an excellent sensing platform that is highly compatible with emerging medical and electronic applications.
doi_str_mv 10.1021/acsami.7b15999
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1973019979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973019979</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-e26df862494e8cf02aaf92ed919a5732e567f5907330033e5a10dff69c79fe1f3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EoqWwMqKMCCnFlzjuGVEVLlIRQ2G2XOdYTZtLsZOBjVfgFXkSglK6Mf1n-P5fOh8hl4xOGeXs1thgqmKqVkwCwBEZM0iSeMYlPz7cSTIiZyFsKE0Fp_KUjDj0SQUdEzX3xm7jrF6b2mIePRfWN67siryw0bL12Nq1WZUYZd-fX8ttUUdLrEPjz8mJM2XAi31OyNt99jp_jBcvD0_zu0VsBKRtjDzN3SzlCSQ4s45yYxxwzIGBkUpwlKlyEqgSglIhUBpGc-dSsAocMicm5HrY3fnmvcPQ6qoIFsvS1Nh0QTNQgjIABT06HdD-gxA8Or3zRWX8h2ZU_8rSgyy9l9UXrvbb3arC_ID_2emBmwHoi3rTdL7uX_1v7QdQCHPn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973019979</pqid></control><display><type>article</type><title>Crack-Enhanced Microfluidic Stretchable E‑Skin Sensor</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Ho, Dong Hae ; Song, Ryungeun ; Sun, Qijun ; Park, Won-Hyeong ; Kim, So Young ; Pang, Changhyun ; Kim, Do Hwan ; Kim, Sang-Youn ; Lee, Jinkee ; Cho, Jeong Ho</creator><creatorcontrib>Ho, Dong Hae ; Song, Ryungeun ; Sun, Qijun ; Park, Won-Hyeong ; Kim, So Young ; Pang, Changhyun ; Kim, Do Hwan ; Kim, Sang-Youn ; Lee, Jinkee ; Cho, Jeong Ho</creatorcontrib><description>We reported the development of a transparent stretchable crack-enhanced microfluidic capacitive sensor array for use in E-skin applications. The microfluidic sensor was fabricated through a simple lamination process involving two silver nanowire (AgNW)-embedded rubbery microfluidic channels arranged in a crisscross fashion. The sensing performance was optimized by testing a variety of sensing liquids injected into the channels. External mechanical stimuli applied to the sensor induced the liquid to penetrate the deformed microcracks on the rubber channel surface. The increased interfacial contact area between the liquid and the nanowire electrodes increased the capacitance of the sensor. The device sensitivity was strongly related to both the initial fluid interface between the liquid and crack wall and the change in the contact length of the liquid and crack wall, which were simulated using the finite element method. The microfluidic sensor was shown to detect a wide range of pressures, 0.1–140 kPa. Ordinary human motions, including substantial as well as slight muscle movements, could be successively detected, and 2D color mappings of simultaneous external load sensing were collected. Our simple method of fabricating the microfluidic channels and the application of these channels to stretchable e-skin sensors offers an excellent sensing platform that is highly compatible with emerging medical and electronic applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b15999</identifier><identifier>PMID: 29205030</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electric Capacitance ; Electrodes ; Equipment Design ; Humans ; Microfluidics ; Nanowires ; Skin</subject><ispartof>ACS applied materials &amp; interfaces, 2017-12, Vol.9 (51), p.44678-44686</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-e26df862494e8cf02aaf92ed919a5732e567f5907330033e5a10dff69c79fe1f3</citedby><cites>FETCH-LOGICAL-a396t-e26df862494e8cf02aaf92ed919a5732e567f5907330033e5a10dff69c79fe1f3</cites><orcidid>0000-0002-1030-9920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29205030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho, Dong Hae</creatorcontrib><creatorcontrib>Song, Ryungeun</creatorcontrib><creatorcontrib>Sun, Qijun</creatorcontrib><creatorcontrib>Park, Won-Hyeong</creatorcontrib><creatorcontrib>Kim, So Young</creatorcontrib><creatorcontrib>Pang, Changhyun</creatorcontrib><creatorcontrib>Kim, Do Hwan</creatorcontrib><creatorcontrib>Kim, Sang-Youn</creatorcontrib><creatorcontrib>Lee, Jinkee</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><title>Crack-Enhanced Microfluidic Stretchable E‑Skin Sensor</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We reported the development of a transparent stretchable crack-enhanced microfluidic capacitive sensor array for use in E-skin applications. The microfluidic sensor was fabricated through a simple lamination process involving two silver nanowire (AgNW)-embedded rubbery microfluidic channels arranged in a crisscross fashion. The sensing performance was optimized by testing a variety of sensing liquids injected into the channels. External mechanical stimuli applied to the sensor induced the liquid to penetrate the deformed microcracks on the rubber channel surface. The increased interfacial contact area between the liquid and the nanowire electrodes increased the capacitance of the sensor. The device sensitivity was strongly related to both the initial fluid interface between the liquid and crack wall and the change in the contact length of the liquid and crack wall, which were simulated using the finite element method. The microfluidic sensor was shown to detect a wide range of pressures, 0.1–140 kPa. Ordinary human motions, including substantial as well as slight muscle movements, could be successively detected, and 2D color mappings of simultaneous external load sensing were collected. Our simple method of fabricating the microfluidic channels and the application of these channels to stretchable e-skin sensors offers an excellent sensing platform that is highly compatible with emerging medical and electronic applications.</description><subject>Electric Capacitance</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Microfluidics</subject><subject>Nanowires</subject><subject>Skin</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EoqWwMqKMCCnFlzjuGVEVLlIRQ2G2XOdYTZtLsZOBjVfgFXkSglK6Mf1n-P5fOh8hl4xOGeXs1thgqmKqVkwCwBEZM0iSeMYlPz7cSTIiZyFsKE0Fp_KUjDj0SQUdEzX3xm7jrF6b2mIePRfWN67siryw0bL12Nq1WZUYZd-fX8ttUUdLrEPjz8mJM2XAi31OyNt99jp_jBcvD0_zu0VsBKRtjDzN3SzlCSQ4s45yYxxwzIGBkUpwlKlyEqgSglIhUBpGc-dSsAocMicm5HrY3fnmvcPQ6qoIFsvS1Nh0QTNQgjIABT06HdD-gxA8Or3zRWX8h2ZU_8rSgyy9l9UXrvbb3arC_ID_2emBmwHoi3rTdL7uX_1v7QdQCHPn</recordid><startdate>20171227</startdate><enddate>20171227</enddate><creator>Ho, Dong Hae</creator><creator>Song, Ryungeun</creator><creator>Sun, Qijun</creator><creator>Park, Won-Hyeong</creator><creator>Kim, So Young</creator><creator>Pang, Changhyun</creator><creator>Kim, Do Hwan</creator><creator>Kim, Sang-Youn</creator><creator>Lee, Jinkee</creator><creator>Cho, Jeong Ho</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1030-9920</orcidid></search><sort><creationdate>20171227</creationdate><title>Crack-Enhanced Microfluidic Stretchable E‑Skin Sensor</title><author>Ho, Dong Hae ; Song, Ryungeun ; Sun, Qijun ; Park, Won-Hyeong ; Kim, So Young ; Pang, Changhyun ; Kim, Do Hwan ; Kim, Sang-Youn ; Lee, Jinkee ; Cho, Jeong Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-e26df862494e8cf02aaf92ed919a5732e567f5907330033e5a10dff69c79fe1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Electric Capacitance</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Microfluidics</topic><topic>Nanowires</topic><topic>Skin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Dong Hae</creatorcontrib><creatorcontrib>Song, Ryungeun</creatorcontrib><creatorcontrib>Sun, Qijun</creatorcontrib><creatorcontrib>Park, Won-Hyeong</creatorcontrib><creatorcontrib>Kim, So Young</creatorcontrib><creatorcontrib>Pang, Changhyun</creatorcontrib><creatorcontrib>Kim, Do Hwan</creatorcontrib><creatorcontrib>Kim, Sang-Youn</creatorcontrib><creatorcontrib>Lee, Jinkee</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Dong Hae</au><au>Song, Ryungeun</au><au>Sun, Qijun</au><au>Park, Won-Hyeong</au><au>Kim, So Young</au><au>Pang, Changhyun</au><au>Kim, Do Hwan</au><au>Kim, Sang-Youn</au><au>Lee, Jinkee</au><au>Cho, Jeong Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crack-Enhanced Microfluidic Stretchable E‑Skin Sensor</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-12-27</date><risdate>2017</risdate><volume>9</volume><issue>51</issue><spage>44678</spage><epage>44686</epage><pages>44678-44686</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We reported the development of a transparent stretchable crack-enhanced microfluidic capacitive sensor array for use in E-skin applications. The microfluidic sensor was fabricated through a simple lamination process involving two silver nanowire (AgNW)-embedded rubbery microfluidic channels arranged in a crisscross fashion. The sensing performance was optimized by testing a variety of sensing liquids injected into the channels. External mechanical stimuli applied to the sensor induced the liquid to penetrate the deformed microcracks on the rubber channel surface. The increased interfacial contact area between the liquid and the nanowire electrodes increased the capacitance of the sensor. The device sensitivity was strongly related to both the initial fluid interface between the liquid and crack wall and the change in the contact length of the liquid and crack wall, which were simulated using the finite element method. The microfluidic sensor was shown to detect a wide range of pressures, 0.1–140 kPa. Ordinary human motions, including substantial as well as slight muscle movements, could be successively detected, and 2D color mappings of simultaneous external load sensing were collected. Our simple method of fabricating the microfluidic channels and the application of these channels to stretchable e-skin sensors offers an excellent sensing platform that is highly compatible with emerging medical and electronic applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29205030</pmid><doi>10.1021/acsami.7b15999</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1030-9920</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-12, Vol.9 (51), p.44678-44686
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1973019979
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Electric Capacitance
Electrodes
Equipment Design
Humans
Microfluidics
Nanowires
Skin
title Crack-Enhanced Microfluidic Stretchable E‑Skin Sensor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-16T08%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crack-Enhanced%20Microfluidic%20Stretchable%20E%E2%80%91Skin%20Sensor&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ho,%20Dong%20Hae&rft.date=2017-12-27&rft.volume=9&rft.issue=51&rft.spage=44678&rft.epage=44686&rft.pages=44678-44686&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b15999&rft_dat=%3Cproquest_cross%3E1973019979%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a396t-e26df862494e8cf02aaf92ed919a5732e567f5907330033e5a10dff69c79fe1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1973019979&rft_id=info:pmid/29205030&rfr_iscdi=true