Loading…
Crack-Enhanced Microfluidic Stretchable E‑Skin Sensor
We reported the development of a transparent stretchable crack-enhanced microfluidic capacitive sensor array for use in E-skin applications. The microfluidic sensor was fabricated through a simple lamination process involving two silver nanowire (AgNW)-embedded rubbery microfluidic channels arranged...
Saved in:
Published in: | ACS applied materials & interfaces 2017-12, Vol.9 (51), p.44678-44686 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a396t-e26df862494e8cf02aaf92ed919a5732e567f5907330033e5a10dff69c79fe1f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a396t-e26df862494e8cf02aaf92ed919a5732e567f5907330033e5a10dff69c79fe1f3 |
container_end_page | 44686 |
container_issue | 51 |
container_start_page | 44678 |
container_title | ACS applied materials & interfaces |
container_volume | 9 |
creator | Ho, Dong Hae Song, Ryungeun Sun, Qijun Park, Won-Hyeong Kim, So Young Pang, Changhyun Kim, Do Hwan Kim, Sang-Youn Lee, Jinkee Cho, Jeong Ho |
description | We reported the development of a transparent stretchable crack-enhanced microfluidic capacitive sensor array for use in E-skin applications. The microfluidic sensor was fabricated through a simple lamination process involving two silver nanowire (AgNW)-embedded rubbery microfluidic channels arranged in a crisscross fashion. The sensing performance was optimized by testing a variety of sensing liquids injected into the channels. External mechanical stimuli applied to the sensor induced the liquid to penetrate the deformed microcracks on the rubber channel surface. The increased interfacial contact area between the liquid and the nanowire electrodes increased the capacitance of the sensor. The device sensitivity was strongly related to both the initial fluid interface between the liquid and crack wall and the change in the contact length of the liquid and crack wall, which were simulated using the finite element method. The microfluidic sensor was shown to detect a wide range of pressures, 0.1–140 kPa. Ordinary human motions, including substantial as well as slight muscle movements, could be successively detected, and 2D color mappings of simultaneous external load sensing were collected. Our simple method of fabricating the microfluidic channels and the application of these channels to stretchable e-skin sensors offers an excellent sensing platform that is highly compatible with emerging medical and electronic applications. |
doi_str_mv | 10.1021/acsami.7b15999 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1973019979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973019979</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-e26df862494e8cf02aaf92ed919a5732e567f5907330033e5a10dff69c79fe1f3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EoqWwMqKMCCnFlzjuGVEVLlIRQ2G2XOdYTZtLsZOBjVfgFXkSglK6Mf1n-P5fOh8hl4xOGeXs1thgqmKqVkwCwBEZM0iSeMYlPz7cSTIiZyFsKE0Fp_KUjDj0SQUdEzX3xm7jrF6b2mIePRfWN67siryw0bL12Nq1WZUYZd-fX8ttUUdLrEPjz8mJM2XAi31OyNt99jp_jBcvD0_zu0VsBKRtjDzN3SzlCSQ4s45yYxxwzIGBkUpwlKlyEqgSglIhUBpGc-dSsAocMicm5HrY3fnmvcPQ6qoIFsvS1Nh0QTNQgjIABT06HdD-gxA8Or3zRWX8h2ZU_8rSgyy9l9UXrvbb3arC_ID_2emBmwHoi3rTdL7uX_1v7QdQCHPn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973019979</pqid></control><display><type>article</type><title>Crack-Enhanced Microfluidic Stretchable E‑Skin Sensor</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Ho, Dong Hae ; Song, Ryungeun ; Sun, Qijun ; Park, Won-Hyeong ; Kim, So Young ; Pang, Changhyun ; Kim, Do Hwan ; Kim, Sang-Youn ; Lee, Jinkee ; Cho, Jeong Ho</creator><creatorcontrib>Ho, Dong Hae ; Song, Ryungeun ; Sun, Qijun ; Park, Won-Hyeong ; Kim, So Young ; Pang, Changhyun ; Kim, Do Hwan ; Kim, Sang-Youn ; Lee, Jinkee ; Cho, Jeong Ho</creatorcontrib><description>We reported the development of a transparent stretchable crack-enhanced microfluidic capacitive sensor array for use in E-skin applications. The microfluidic sensor was fabricated through a simple lamination process involving two silver nanowire (AgNW)-embedded rubbery microfluidic channels arranged in a crisscross fashion. The sensing performance was optimized by testing a variety of sensing liquids injected into the channels. External mechanical stimuli applied to the sensor induced the liquid to penetrate the deformed microcracks on the rubber channel surface. The increased interfacial contact area between the liquid and the nanowire electrodes increased the capacitance of the sensor. The device sensitivity was strongly related to both the initial fluid interface between the liquid and crack wall and the change in the contact length of the liquid and crack wall, which were simulated using the finite element method. The microfluidic sensor was shown to detect a wide range of pressures, 0.1–140 kPa. Ordinary human motions, including substantial as well as slight muscle movements, could be successively detected, and 2D color mappings of simultaneous external load sensing were collected. Our simple method of fabricating the microfluidic channels and the application of these channels to stretchable e-skin sensors offers an excellent sensing platform that is highly compatible with emerging medical and electronic applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b15999</identifier><identifier>PMID: 29205030</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electric Capacitance ; Electrodes ; Equipment Design ; Humans ; Microfluidics ; Nanowires ; Skin</subject><ispartof>ACS applied materials & interfaces, 2017-12, Vol.9 (51), p.44678-44686</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-e26df862494e8cf02aaf92ed919a5732e567f5907330033e5a10dff69c79fe1f3</citedby><cites>FETCH-LOGICAL-a396t-e26df862494e8cf02aaf92ed919a5732e567f5907330033e5a10dff69c79fe1f3</cites><orcidid>0000-0002-1030-9920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29205030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho, Dong Hae</creatorcontrib><creatorcontrib>Song, Ryungeun</creatorcontrib><creatorcontrib>Sun, Qijun</creatorcontrib><creatorcontrib>Park, Won-Hyeong</creatorcontrib><creatorcontrib>Kim, So Young</creatorcontrib><creatorcontrib>Pang, Changhyun</creatorcontrib><creatorcontrib>Kim, Do Hwan</creatorcontrib><creatorcontrib>Kim, Sang-Youn</creatorcontrib><creatorcontrib>Lee, Jinkee</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><title>Crack-Enhanced Microfluidic Stretchable E‑Skin Sensor</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We reported the development of a transparent stretchable crack-enhanced microfluidic capacitive sensor array for use in E-skin applications. The microfluidic sensor was fabricated through a simple lamination process involving two silver nanowire (AgNW)-embedded rubbery microfluidic channels arranged in a crisscross fashion. The sensing performance was optimized by testing a variety of sensing liquids injected into the channels. External mechanical stimuli applied to the sensor induced the liquid to penetrate the deformed microcracks on the rubber channel surface. The increased interfacial contact area between the liquid and the nanowire electrodes increased the capacitance of the sensor. The device sensitivity was strongly related to both the initial fluid interface between the liquid and crack wall and the change in the contact length of the liquid and crack wall, which were simulated using the finite element method. The microfluidic sensor was shown to detect a wide range of pressures, 0.1–140 kPa. Ordinary human motions, including substantial as well as slight muscle movements, could be successively detected, and 2D color mappings of simultaneous external load sensing were collected. Our simple method of fabricating the microfluidic channels and the application of these channels to stretchable e-skin sensors offers an excellent sensing platform that is highly compatible with emerging medical and electronic applications.</description><subject>Electric Capacitance</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Microfluidics</subject><subject>Nanowires</subject><subject>Skin</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EoqWwMqKMCCnFlzjuGVEVLlIRQ2G2XOdYTZtLsZOBjVfgFXkSglK6Mf1n-P5fOh8hl4xOGeXs1thgqmKqVkwCwBEZM0iSeMYlPz7cSTIiZyFsKE0Fp_KUjDj0SQUdEzX3xm7jrF6b2mIePRfWN67siryw0bL12Nq1WZUYZd-fX8ttUUdLrEPjz8mJM2XAi31OyNt99jp_jBcvD0_zu0VsBKRtjDzN3SzlCSQ4s45yYxxwzIGBkUpwlKlyEqgSglIhUBpGc-dSsAocMicm5HrY3fnmvcPQ6qoIFsvS1Nh0QTNQgjIABT06HdD-gxA8Or3zRWX8h2ZU_8rSgyy9l9UXrvbb3arC_ID_2emBmwHoi3rTdL7uX_1v7QdQCHPn</recordid><startdate>20171227</startdate><enddate>20171227</enddate><creator>Ho, Dong Hae</creator><creator>Song, Ryungeun</creator><creator>Sun, Qijun</creator><creator>Park, Won-Hyeong</creator><creator>Kim, So Young</creator><creator>Pang, Changhyun</creator><creator>Kim, Do Hwan</creator><creator>Kim, Sang-Youn</creator><creator>Lee, Jinkee</creator><creator>Cho, Jeong Ho</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1030-9920</orcidid></search><sort><creationdate>20171227</creationdate><title>Crack-Enhanced Microfluidic Stretchable E‑Skin Sensor</title><author>Ho, Dong Hae ; Song, Ryungeun ; Sun, Qijun ; Park, Won-Hyeong ; Kim, So Young ; Pang, Changhyun ; Kim, Do Hwan ; Kim, Sang-Youn ; Lee, Jinkee ; Cho, Jeong Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-e26df862494e8cf02aaf92ed919a5732e567f5907330033e5a10dff69c79fe1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Electric Capacitance</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Microfluidics</topic><topic>Nanowires</topic><topic>Skin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Dong Hae</creatorcontrib><creatorcontrib>Song, Ryungeun</creatorcontrib><creatorcontrib>Sun, Qijun</creatorcontrib><creatorcontrib>Park, Won-Hyeong</creatorcontrib><creatorcontrib>Kim, So Young</creatorcontrib><creatorcontrib>Pang, Changhyun</creatorcontrib><creatorcontrib>Kim, Do Hwan</creatorcontrib><creatorcontrib>Kim, Sang-Youn</creatorcontrib><creatorcontrib>Lee, Jinkee</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Dong Hae</au><au>Song, Ryungeun</au><au>Sun, Qijun</au><au>Park, Won-Hyeong</au><au>Kim, So Young</au><au>Pang, Changhyun</au><au>Kim, Do Hwan</au><au>Kim, Sang-Youn</au><au>Lee, Jinkee</au><au>Cho, Jeong Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crack-Enhanced Microfluidic Stretchable E‑Skin Sensor</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-12-27</date><risdate>2017</risdate><volume>9</volume><issue>51</issue><spage>44678</spage><epage>44686</epage><pages>44678-44686</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We reported the development of a transparent stretchable crack-enhanced microfluidic capacitive sensor array for use in E-skin applications. The microfluidic sensor was fabricated through a simple lamination process involving two silver nanowire (AgNW)-embedded rubbery microfluidic channels arranged in a crisscross fashion. The sensing performance was optimized by testing a variety of sensing liquids injected into the channels. External mechanical stimuli applied to the sensor induced the liquid to penetrate the deformed microcracks on the rubber channel surface. The increased interfacial contact area between the liquid and the nanowire electrodes increased the capacitance of the sensor. The device sensitivity was strongly related to both the initial fluid interface between the liquid and crack wall and the change in the contact length of the liquid and crack wall, which were simulated using the finite element method. The microfluidic sensor was shown to detect a wide range of pressures, 0.1–140 kPa. Ordinary human motions, including substantial as well as slight muscle movements, could be successively detected, and 2D color mappings of simultaneous external load sensing were collected. Our simple method of fabricating the microfluidic channels and the application of these channels to stretchable e-skin sensors offers an excellent sensing platform that is highly compatible with emerging medical and electronic applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29205030</pmid><doi>10.1021/acsami.7b15999</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1030-9920</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2017-12, Vol.9 (51), p.44678-44686 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1973019979 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Electric Capacitance Electrodes Equipment Design Humans Microfluidics Nanowires Skin |
title | Crack-Enhanced Microfluidic Stretchable E‑Skin Sensor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-16T08%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crack-Enhanced%20Microfluidic%20Stretchable%20E%E2%80%91Skin%20Sensor&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ho,%20Dong%20Hae&rft.date=2017-12-27&rft.volume=9&rft.issue=51&rft.spage=44678&rft.epage=44686&rft.pages=44678-44686&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b15999&rft_dat=%3Cproquest_cross%3E1973019979%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a396t-e26df862494e8cf02aaf92ed919a5732e567f5907330033e5a10dff69c79fe1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1973019979&rft_id=info:pmid/29205030&rfr_iscdi=true |