Loading…

Single Molecule Nanopore Spectrometry for Peptide Detection

Sensing and characterization of water-soluble peptides is of critical importance in a wide variety of bioapplications. Single molecule nanopore spectrometry (SMNS) is based on the idea that one can use biological protein nanopores to resolve different sized molecules down to limits set by the blocka...

Full description

Saved in:
Bibliographic Details
Published in:ACS sensors 2017-09, Vol.2 (9), p.1319-1328
Main Authors: Chavis, Amy E, Brady, Kyle T, Hatmaker, Grace A, Angevine, Christopher E, Kothalawala, Nuwan, Dass, Amala, Robertson, Joseph W. F, Reiner, Joseph E
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a412t-dadbcbc853898f96ee200f47e48173e8bd3aa0f76d52ba4c19ac958ca8c109d73
cites cdi_FETCH-LOGICAL-a412t-dadbcbc853898f96ee200f47e48173e8bd3aa0f76d52ba4c19ac958ca8c109d73
container_end_page 1328
container_issue 9
container_start_page 1319
container_title ACS sensors
container_volume 2
creator Chavis, Amy E
Brady, Kyle T
Hatmaker, Grace A
Angevine, Christopher E
Kothalawala, Nuwan
Dass, Amala
Robertson, Joseph W. F
Reiner, Joseph E
description Sensing and characterization of water-soluble peptides is of critical importance in a wide variety of bioapplications. Single molecule nanopore spectrometry (SMNS) is based on the idea that one can use biological protein nanopores to resolve different sized molecules down to limits set by the blockade duration and noise. Previous work has shown that this enables discrimination between polyethylene glycol (PEG) molecules that differ by a single monomer unit. This paper describes efforts to extend SMNS to a variety of biologically relevant, water-soluble peptides. We describe the use of Au25(SG)18 clusters, previously shown to improve PEG detection, to increase the on- and off-rate of peptides to the pore. In addition, we study the role that fluctuations play in the single molecule nanopore spectrometry (SMNS) methodology and show that modifying solution conditions to increase peptide flexibility (via pH or chaotropic salt) leads to a nearly 2-fold reduction in the current blockade fluctuations and a corresponding narrowing of the peaks in the blockade distributions. Finally, a model is presented that connects the current blockade depths to the mass of the peptides, which shows that our enhanced SMNS detection improves the mass resolution of the nanopore sensor more than 2-fold for the largest cationic peptides studied.
doi_str_mv 10.1021/acssensors.7b00362
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1929896983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1929896983</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-dadbcbc853898f96ee200f47e48173e8bd3aa0f76d52ba4c19ac958ca8c109d73</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EolXpD7BAWbJJ8SNxbLFC5SmVh1RYW449QamSONjJon-PUctjxWpGmnOvNAehU4IXBFNyoU0I0AXnw6IoMWacHqApZYVMGZfZ4Z99guYhbDDGJOc0F_gYTagQhLKcT9Hluu7eG0geXQNmjMuT7lzvPCTrHszgXQuD3yaV88kL9ENtIbmGIV5q152go0o3Aeb7OUNvtzevy_t09Xz3sLxapTojdEittqUpjciZkKKSHIBiXGUFZIIUDERpmda4KrjNaakzQ6Q2MhdGC0OwtAWbofNdb-_dxwhhUG0dDDSN7sCNQRFJpZBcChZRukONdyF4qFTv61b7rSJYfXlTv97U3lsMne37x7IF-xP5thSBxQ6IYbVxo-_iu_81fgLg8nwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929896983</pqid></control><display><type>article</type><title>Single Molecule Nanopore Spectrometry for Peptide Detection</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Chavis, Amy E ; Brady, Kyle T ; Hatmaker, Grace A ; Angevine, Christopher E ; Kothalawala, Nuwan ; Dass, Amala ; Robertson, Joseph W. F ; Reiner, Joseph E</creator><creatorcontrib>Chavis, Amy E ; Brady, Kyle T ; Hatmaker, Grace A ; Angevine, Christopher E ; Kothalawala, Nuwan ; Dass, Amala ; Robertson, Joseph W. F ; Reiner, Joseph E</creatorcontrib><description>Sensing and characterization of water-soluble peptides is of critical importance in a wide variety of bioapplications. Single molecule nanopore spectrometry (SMNS) is based on the idea that one can use biological protein nanopores to resolve different sized molecules down to limits set by the blockade duration and noise. Previous work has shown that this enables discrimination between polyethylene glycol (PEG) molecules that differ by a single monomer unit. This paper describes efforts to extend SMNS to a variety of biologically relevant, water-soluble peptides. We describe the use of Au25(SG)18 clusters, previously shown to improve PEG detection, to increase the on- and off-rate of peptides to the pore. In addition, we study the role that fluctuations play in the single molecule nanopore spectrometry (SMNS) methodology and show that modifying solution conditions to increase peptide flexibility (via pH or chaotropic salt) leads to a nearly 2-fold reduction in the current blockade fluctuations and a corresponding narrowing of the peaks in the blockade distributions. Finally, a model is presented that connects the current blockade depths to the mass of the peptides, which shows that our enhanced SMNS detection improves the mass resolution of the nanopore sensor more than 2-fold for the largest cationic peptides studied.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.7b00362</identifier><identifier>PMID: 28812356</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS sensors, 2017-09, Vol.2 (9), p.1319-1328</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-dadbcbc853898f96ee200f47e48173e8bd3aa0f76d52ba4c19ac958ca8c109d73</citedby><cites>FETCH-LOGICAL-a412t-dadbcbc853898f96ee200f47e48173e8bd3aa0f76d52ba4c19ac958ca8c109d73</cites><orcidid>0000-0002-1056-8703 ; 0000-0001-6942-5451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28812356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chavis, Amy E</creatorcontrib><creatorcontrib>Brady, Kyle T</creatorcontrib><creatorcontrib>Hatmaker, Grace A</creatorcontrib><creatorcontrib>Angevine, Christopher E</creatorcontrib><creatorcontrib>Kothalawala, Nuwan</creatorcontrib><creatorcontrib>Dass, Amala</creatorcontrib><creatorcontrib>Robertson, Joseph W. F</creatorcontrib><creatorcontrib>Reiner, Joseph E</creatorcontrib><title>Single Molecule Nanopore Spectrometry for Peptide Detection</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>Sensing and characterization of water-soluble peptides is of critical importance in a wide variety of bioapplications. Single molecule nanopore spectrometry (SMNS) is based on the idea that one can use biological protein nanopores to resolve different sized molecules down to limits set by the blockade duration and noise. Previous work has shown that this enables discrimination between polyethylene glycol (PEG) molecules that differ by a single monomer unit. This paper describes efforts to extend SMNS to a variety of biologically relevant, water-soluble peptides. We describe the use of Au25(SG)18 clusters, previously shown to improve PEG detection, to increase the on- and off-rate of peptides to the pore. In addition, we study the role that fluctuations play in the single molecule nanopore spectrometry (SMNS) methodology and show that modifying solution conditions to increase peptide flexibility (via pH or chaotropic salt) leads to a nearly 2-fold reduction in the current blockade fluctuations and a corresponding narrowing of the peaks in the blockade distributions. Finally, a model is presented that connects the current blockade depths to the mass of the peptides, which shows that our enhanced SMNS detection improves the mass resolution of the nanopore sensor more than 2-fold for the largest cationic peptides studied.</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EolXpD7BAWbJJ8SNxbLFC5SmVh1RYW449QamSONjJon-PUctjxWpGmnOvNAehU4IXBFNyoU0I0AXnw6IoMWacHqApZYVMGZfZ4Z99guYhbDDGJOc0F_gYTagQhLKcT9Hluu7eG0geXQNmjMuT7lzvPCTrHszgXQuD3yaV88kL9ENtIbmGIV5q152go0o3Aeb7OUNvtzevy_t09Xz3sLxapTojdEittqUpjciZkKKSHIBiXGUFZIIUDERpmda4KrjNaakzQ6Q2MhdGC0OwtAWbofNdb-_dxwhhUG0dDDSN7sCNQRFJpZBcChZRukONdyF4qFTv61b7rSJYfXlTv97U3lsMne37x7IF-xP5thSBxQ6IYbVxo-_iu_81fgLg8nwE</recordid><startdate>20170922</startdate><enddate>20170922</enddate><creator>Chavis, Amy E</creator><creator>Brady, Kyle T</creator><creator>Hatmaker, Grace A</creator><creator>Angevine, Christopher E</creator><creator>Kothalawala, Nuwan</creator><creator>Dass, Amala</creator><creator>Robertson, Joseph W. F</creator><creator>Reiner, Joseph E</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1056-8703</orcidid><orcidid>https://orcid.org/0000-0001-6942-5451</orcidid></search><sort><creationdate>20170922</creationdate><title>Single Molecule Nanopore Spectrometry for Peptide Detection</title><author>Chavis, Amy E ; Brady, Kyle T ; Hatmaker, Grace A ; Angevine, Christopher E ; Kothalawala, Nuwan ; Dass, Amala ; Robertson, Joseph W. F ; Reiner, Joseph E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-dadbcbc853898f96ee200f47e48173e8bd3aa0f76d52ba4c19ac958ca8c109d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chavis, Amy E</creatorcontrib><creatorcontrib>Brady, Kyle T</creatorcontrib><creatorcontrib>Hatmaker, Grace A</creatorcontrib><creatorcontrib>Angevine, Christopher E</creatorcontrib><creatorcontrib>Kothalawala, Nuwan</creatorcontrib><creatorcontrib>Dass, Amala</creatorcontrib><creatorcontrib>Robertson, Joseph W. F</creatorcontrib><creatorcontrib>Reiner, Joseph E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavis, Amy E</au><au>Brady, Kyle T</au><au>Hatmaker, Grace A</au><au>Angevine, Christopher E</au><au>Kothalawala, Nuwan</au><au>Dass, Amala</au><au>Robertson, Joseph W. F</au><au>Reiner, Joseph E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Molecule Nanopore Spectrometry for Peptide Detection</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2017-09-22</date><risdate>2017</risdate><volume>2</volume><issue>9</issue><spage>1319</spage><epage>1328</epage><pages>1319-1328</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Sensing and characterization of water-soluble peptides is of critical importance in a wide variety of bioapplications. Single molecule nanopore spectrometry (SMNS) is based on the idea that one can use biological protein nanopores to resolve different sized molecules down to limits set by the blockade duration and noise. Previous work has shown that this enables discrimination between polyethylene glycol (PEG) molecules that differ by a single monomer unit. This paper describes efforts to extend SMNS to a variety of biologically relevant, water-soluble peptides. We describe the use of Au25(SG)18 clusters, previously shown to improve PEG detection, to increase the on- and off-rate of peptides to the pore. In addition, we study the role that fluctuations play in the single molecule nanopore spectrometry (SMNS) methodology and show that modifying solution conditions to increase peptide flexibility (via pH or chaotropic salt) leads to a nearly 2-fold reduction in the current blockade fluctuations and a corresponding narrowing of the peaks in the blockade distributions. Finally, a model is presented that connects the current blockade depths to the mass of the peptides, which shows that our enhanced SMNS detection improves the mass resolution of the nanopore sensor more than 2-fold for the largest cationic peptides studied.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28812356</pmid><doi>10.1021/acssensors.7b00362</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1056-8703</orcidid><orcidid>https://orcid.org/0000-0001-6942-5451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2017-09, Vol.2 (9), p.1319-1328
issn 2379-3694
2379-3694
language eng
recordid cdi_proquest_miscellaneous_1929896983
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Single Molecule Nanopore Spectrometry for Peptide Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-24T06%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Molecule%20Nanopore%20Spectrometry%20for%20Peptide%20Detection&rft.jtitle=ACS%20sensors&rft.au=Chavis,%20Amy%20E&rft.date=2017-09-22&rft.volume=2&rft.issue=9&rft.spage=1319&rft.epage=1328&rft.pages=1319-1328&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.7b00362&rft_dat=%3Cproquest_cross%3E1929896983%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a412t-dadbcbc853898f96ee200f47e48173e8bd3aa0f76d52ba4c19ac958ca8c109d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1929896983&rft_id=info:pmid/28812356&rfr_iscdi=true