Loading…

Tight control of sulfur assimilation: an adaptive mechanism for a plant from a severely phosphorus-impoverished habitat

Hakea prostrata (Proteaceae) has evolved in extremely phosphorus (P)-impoverished habitats. Unlike species that evolved in P-richer environments, it tightly controls its nitrogen (N) acquisition, matching its low protein concentration, and thus limiting its P requirement for ribosomal RNA (rRNA). Pr...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2017-08, Vol.215 (3), p.1068-1079
Main Authors: Prodhan, M. Asaduzzaman, Jost, Ricarda, Watanabe, Mutsumi, Hoefgen, Rainer, Lambers, Hans, Finnegan, Patrick M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4760-f94665da51b5019c80d4885b1ecdc78d240037ba9458a9c5fccc8e98d432ba2f3
cites cdi_FETCH-LOGICAL-c4760-f94665da51b5019c80d4885b1ecdc78d240037ba9458a9c5fccc8e98d432ba2f3
container_end_page 1079
container_issue 3
container_start_page 1068
container_title The New phytologist
container_volume 215
creator Prodhan, M. Asaduzzaman
Jost, Ricarda
Watanabe, Mutsumi
Hoefgen, Rainer
Lambers, Hans
Finnegan, Patrick M.
description Hakea prostrata (Proteaceae) has evolved in extremely phosphorus (P)-impoverished habitats. Unlike species that evolved in P-richer environments, it tightly controls its nitrogen (N) acquisition, matching its low protein concentration, and thus limiting its P requirement for ribosomal RNA (rRNA). Protein is a major sink for sulfur (S), but the link between low protein concentrations and S metabolism in H. prostrata is unknown, although this is pivotal for understanding this species’ supreme adaptation to P-impoverished soils. Plants were grown at different sulfate supplies for 5 wk and used for nutrient and metabolite analyses. Total S content in H. prostrata was unchanged with increasing S supply, in sharp contrast with species that typically evolved in environments where P is not a major limiting nutrient. Unlike H. prostrata, other plants typically store excess available sulfate in vacuoles. Like other species, S-starved H. prostrata accumulated arginine, lysine and O-acetylserine, indicating S deficiency. Hakea prostrata tightly controls its S acquisition to match its low protein concentration and low demand for rRNA, and thus P, the largest organic P pool in leaves. We conclude that the tight control of S acquisition, like that of N, helps H. prostrata to survive in P-impoverished environments.
doi_str_mv 10.1111/nph.14640
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1914581576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90011130</jstor_id><sourcerecordid>90011130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4760-f94665da51b5019c80d4885b1ecdc78d240037ba9458a9c5fccc8e98d432ba2f3</originalsourceid><addsrcrecordid>eNp10E1LwzAcBvAgipsvBz-AUtCDHrolbV6PMtQJQz1M8BbSNHUdbTOTFtm3N7PbDoK5_C-_5yE8AFwgOELhjZvVYoQwxfAADMMVMUcpOwRDCBMeU0w_BuDE-yWEUBCaHINBwimhlLIhuJmXn4s20rZpna0iW0S-q4rORcr7si4r1Za2OQNHhaq8Od_eU_D--DCfTOPZ69Pz5H4Wa8wojAuBKSW5IigjEAnNYY45JxkyOteM5wmGMGWZEphwJTQptNbcCJ7jNMlUUqSn4LbvXTn71Rnfyrr02lSVaoztvEQChSgijAZ6_Ycubeea8LuNYjQRKWdB3fVKO-u9M4VcubJWbi0RlJvpZJhO_k4X7NW2sctqk-_lbqsAxj34Liuz_r9JvrxNd5WXfWLpW-v2CQFhCKQw_QHROH-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917629387</pqid></control><display><type>article</type><title>Tight control of sulfur assimilation: an adaptive mechanism for a plant from a severely phosphorus-impoverished habitat</title><source>Wiley</source><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><creator>Prodhan, M. Asaduzzaman ; Jost, Ricarda ; Watanabe, Mutsumi ; Hoefgen, Rainer ; Lambers, Hans ; Finnegan, Patrick M.</creator><creatorcontrib>Prodhan, M. Asaduzzaman ; Jost, Ricarda ; Watanabe, Mutsumi ; Hoefgen, Rainer ; Lambers, Hans ; Finnegan, Patrick M.</creatorcontrib><description>Hakea prostrata (Proteaceae) has evolved in extremely phosphorus (P)-impoverished habitats. Unlike species that evolved in P-richer environments, it tightly controls its nitrogen (N) acquisition, matching its low protein concentration, and thus limiting its P requirement for ribosomal RNA (rRNA). Protein is a major sink for sulfur (S), but the link between low protein concentrations and S metabolism in H. prostrata is unknown, although this is pivotal for understanding this species’ supreme adaptation to P-impoverished soils. Plants were grown at different sulfate supplies for 5 wk and used for nutrient and metabolite analyses. Total S content in H. prostrata was unchanged with increasing S supply, in sharp contrast with species that typically evolved in environments where P is not a major limiting nutrient. Unlike H. prostrata, other plants typically store excess available sulfate in vacuoles. Like other species, S-starved H. prostrata accumulated arginine, lysine and O-acetylserine, indicating S deficiency. Hakea prostrata tightly controls its S acquisition to match its low protein concentration and low demand for rRNA, and thus P, the largest organic P pool in leaves. We conclude that the tight control of S acquisition, like that of N, helps H. prostrata to survive in P-impoverished environments.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.14640</identifier><identifier>PMID: 28656667</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Adaptation ; Adaptive control ; Arginine ; Biological assimilation ; Biological evolution ; Biomass ; Constraining ; Ecosystem ; Habitats ; Hakea prostrata ; Leaves ; Lysine ; Metabolism ; metabolite profiling ; Metabolome - drug effects ; Mineral nutrients ; Molybdenum - metabolism ; Nitrogen ; Nucleic acids ; Nutrient availability ; Nutrient content ; Nutrients ; Phosphates - pharmacology ; Phosphorus ; Phosphorus - deficiency ; phosphorus‐use efficiency ; Pigments, Biological - metabolism ; Plant Leaves - drug effects ; Plant Leaves - metabolism ; plant nutrition ; Plant Roots - drug effects ; Plant Roots - metabolism ; Plant Stems - drug effects ; Plant Stems - metabolism ; Plants ; Proteaceae ; Proteaceae - metabolism ; Protein turnover ; Proteins ; Ribonucleic acid ; RNA ; rRNA ; Soil ; Species ; Sulfates ; Sulfates - pharmacology ; Sulfur ; Sulfur - metabolism ; sulfur uptake ; Sulphur ; Vacuoles</subject><ispartof>The New phytologist, 2017-08, Vol.215 (3), p.1068-1079</ispartof><rights>2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust.</rights><rights>Copyright © 2017 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4760-f94665da51b5019c80d4885b1ecdc78d240037ba9458a9c5fccc8e98d432ba2f3</citedby><cites>FETCH-LOGICAL-c4760-f94665da51b5019c80d4885b1ecdc78d240037ba9458a9c5fccc8e98d432ba2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.14640$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.14640$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032,58593,58826</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28656667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prodhan, M. Asaduzzaman</creatorcontrib><creatorcontrib>Jost, Ricarda</creatorcontrib><creatorcontrib>Watanabe, Mutsumi</creatorcontrib><creatorcontrib>Hoefgen, Rainer</creatorcontrib><creatorcontrib>Lambers, Hans</creatorcontrib><creatorcontrib>Finnegan, Patrick M.</creatorcontrib><title>Tight control of sulfur assimilation: an adaptive mechanism for a plant from a severely phosphorus-impoverished habitat</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Hakea prostrata (Proteaceae) has evolved in extremely phosphorus (P)-impoverished habitats. Unlike species that evolved in P-richer environments, it tightly controls its nitrogen (N) acquisition, matching its low protein concentration, and thus limiting its P requirement for ribosomal RNA (rRNA). Protein is a major sink for sulfur (S), but the link between low protein concentrations and S metabolism in H. prostrata is unknown, although this is pivotal for understanding this species’ supreme adaptation to P-impoverished soils. Plants were grown at different sulfate supplies for 5 wk and used for nutrient and metabolite analyses. Total S content in H. prostrata was unchanged with increasing S supply, in sharp contrast with species that typically evolved in environments where P is not a major limiting nutrient. Unlike H. prostrata, other plants typically store excess available sulfate in vacuoles. Like other species, S-starved H. prostrata accumulated arginine, lysine and O-acetylserine, indicating S deficiency. Hakea prostrata tightly controls its S acquisition to match its low protein concentration and low demand for rRNA, and thus P, the largest organic P pool in leaves. We conclude that the tight control of S acquisition, like that of N, helps H. prostrata to survive in P-impoverished environments.</description><subject>Adaptation</subject><subject>Adaptive control</subject><subject>Arginine</subject><subject>Biological assimilation</subject><subject>Biological evolution</subject><subject>Biomass</subject><subject>Constraining</subject><subject>Ecosystem</subject><subject>Habitats</subject><subject>Hakea prostrata</subject><subject>Leaves</subject><subject>Lysine</subject><subject>Metabolism</subject><subject>metabolite profiling</subject><subject>Metabolome - drug effects</subject><subject>Mineral nutrients</subject><subject>Molybdenum - metabolism</subject><subject>Nitrogen</subject><subject>Nucleic acids</subject><subject>Nutrient availability</subject><subject>Nutrient content</subject><subject>Nutrients</subject><subject>Phosphates - pharmacology</subject><subject>Phosphorus</subject><subject>Phosphorus - deficiency</subject><subject>phosphorus‐use efficiency</subject><subject>Pigments, Biological - metabolism</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - metabolism</subject><subject>plant nutrition</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - metabolism</subject><subject>Plant Stems - drug effects</subject><subject>Plant Stems - metabolism</subject><subject>Plants</subject><subject>Proteaceae</subject><subject>Proteaceae - metabolism</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>rRNA</subject><subject>Soil</subject><subject>Species</subject><subject>Sulfates</subject><subject>Sulfates - pharmacology</subject><subject>Sulfur</subject><subject>Sulfur - metabolism</subject><subject>sulfur uptake</subject><subject>Sulphur</subject><subject>Vacuoles</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10E1LwzAcBvAgipsvBz-AUtCDHrolbV6PMtQJQz1M8BbSNHUdbTOTFtm3N7PbDoK5_C-_5yE8AFwgOELhjZvVYoQwxfAADMMVMUcpOwRDCBMeU0w_BuDE-yWEUBCaHINBwimhlLIhuJmXn4s20rZpna0iW0S-q4rORcr7si4r1Za2OQNHhaq8Od_eU_D--DCfTOPZ69Pz5H4Wa8wojAuBKSW5IigjEAnNYY45JxkyOteM5wmGMGWZEphwJTQptNbcCJ7jNMlUUqSn4LbvXTn71Rnfyrr02lSVaoztvEQChSgijAZ6_Ycubeea8LuNYjQRKWdB3fVKO-u9M4VcubJWbi0RlJvpZJhO_k4X7NW2sctqk-_lbqsAxj34Liuz_r9JvrxNd5WXfWLpW-v2CQFhCKQw_QHROH-A</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Prodhan, M. Asaduzzaman</creator><creator>Jost, Ricarda</creator><creator>Watanabe, Mutsumi</creator><creator>Hoefgen, Rainer</creator><creator>Lambers, Hans</creator><creator>Finnegan, Patrick M.</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>Tight control of sulfur assimilation</title><author>Prodhan, M. Asaduzzaman ; Jost, Ricarda ; Watanabe, Mutsumi ; Hoefgen, Rainer ; Lambers, Hans ; Finnegan, Patrick M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4760-f94665da51b5019c80d4885b1ecdc78d240037ba9458a9c5fccc8e98d432ba2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation</topic><topic>Adaptive control</topic><topic>Arginine</topic><topic>Biological assimilation</topic><topic>Biological evolution</topic><topic>Biomass</topic><topic>Constraining</topic><topic>Ecosystem</topic><topic>Habitats</topic><topic>Hakea prostrata</topic><topic>Leaves</topic><topic>Lysine</topic><topic>Metabolism</topic><topic>metabolite profiling</topic><topic>Metabolome - drug effects</topic><topic>Mineral nutrients</topic><topic>Molybdenum - metabolism</topic><topic>Nitrogen</topic><topic>Nucleic acids</topic><topic>Nutrient availability</topic><topic>Nutrient content</topic><topic>Nutrients</topic><topic>Phosphates - pharmacology</topic><topic>Phosphorus</topic><topic>Phosphorus - deficiency</topic><topic>phosphorus‐use efficiency</topic><topic>Pigments, Biological - metabolism</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - metabolism</topic><topic>plant nutrition</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - metabolism</topic><topic>Plant Stems - drug effects</topic><topic>Plant Stems - metabolism</topic><topic>Plants</topic><topic>Proteaceae</topic><topic>Proteaceae - metabolism</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>rRNA</topic><topic>Soil</topic><topic>Species</topic><topic>Sulfates</topic><topic>Sulfates - pharmacology</topic><topic>Sulfur</topic><topic>Sulfur - metabolism</topic><topic>sulfur uptake</topic><topic>Sulphur</topic><topic>Vacuoles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prodhan, M. Asaduzzaman</creatorcontrib><creatorcontrib>Jost, Ricarda</creatorcontrib><creatorcontrib>Watanabe, Mutsumi</creatorcontrib><creatorcontrib>Hoefgen, Rainer</creatorcontrib><creatorcontrib>Lambers, Hans</creatorcontrib><creatorcontrib>Finnegan, Patrick M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prodhan, M. Asaduzzaman</au><au>Jost, Ricarda</au><au>Watanabe, Mutsumi</au><au>Hoefgen, Rainer</au><au>Lambers, Hans</au><au>Finnegan, Patrick M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight control of sulfur assimilation: an adaptive mechanism for a plant from a severely phosphorus-impoverished habitat</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2017-08</date><risdate>2017</risdate><volume>215</volume><issue>3</issue><spage>1068</spage><epage>1079</epage><pages>1068-1079</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Hakea prostrata (Proteaceae) has evolved in extremely phosphorus (P)-impoverished habitats. Unlike species that evolved in P-richer environments, it tightly controls its nitrogen (N) acquisition, matching its low protein concentration, and thus limiting its P requirement for ribosomal RNA (rRNA). Protein is a major sink for sulfur (S), but the link between low protein concentrations and S metabolism in H. prostrata is unknown, although this is pivotal for understanding this species’ supreme adaptation to P-impoverished soils. Plants were grown at different sulfate supplies for 5 wk and used for nutrient and metabolite analyses. Total S content in H. prostrata was unchanged with increasing S supply, in sharp contrast with species that typically evolved in environments where P is not a major limiting nutrient. Unlike H. prostrata, other plants typically store excess available sulfate in vacuoles. Like other species, S-starved H. prostrata accumulated arginine, lysine and O-acetylserine, indicating S deficiency. Hakea prostrata tightly controls its S acquisition to match its low protein concentration and low demand for rRNA, and thus P, the largest organic P pool in leaves. We conclude that the tight control of S acquisition, like that of N, helps H. prostrata to survive in P-impoverished environments.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>28656667</pmid><doi>10.1111/nph.14640</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2017-08, Vol.215 (3), p.1068-1079
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1914581576
source Wiley; JSTOR Archival Journals and Primary Sources Collection【Remote access available】
subjects Adaptation
Adaptive control
Arginine
Biological assimilation
Biological evolution
Biomass
Constraining
Ecosystem
Habitats
Hakea prostrata
Leaves
Lysine
Metabolism
metabolite profiling
Metabolome - drug effects
Mineral nutrients
Molybdenum - metabolism
Nitrogen
Nucleic acids
Nutrient availability
Nutrient content
Nutrients
Phosphates - pharmacology
Phosphorus
Phosphorus - deficiency
phosphorus‐use efficiency
Pigments, Biological - metabolism
Plant Leaves - drug effects
Plant Leaves - metabolism
plant nutrition
Plant Roots - drug effects
Plant Roots - metabolism
Plant Stems - drug effects
Plant Stems - metabolism
Plants
Proteaceae
Proteaceae - metabolism
Protein turnover
Proteins
Ribonucleic acid
RNA
rRNA
Soil
Species
Sulfates
Sulfates - pharmacology
Sulfur
Sulfur - metabolism
sulfur uptake
Sulphur
Vacuoles
title Tight control of sulfur assimilation: an adaptive mechanism for a plant from a severely phosphorus-impoverished habitat
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T07%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20control%20of%20sulfur%20assimilation:%20an%20adaptive%20mechanism%20for%20a%20plant%20from%20a%20severely%20phosphorus-impoverished%20habitat&rft.jtitle=The%20New%20phytologist&rft.au=Prodhan,%20M.%20Asaduzzaman&rft.date=2017-08&rft.volume=215&rft.issue=3&rft.spage=1068&rft.epage=1079&rft.pages=1068-1079&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.14640&rft_dat=%3Cjstor_proqu%3E90011130%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4760-f94665da51b5019c80d4885b1ecdc78d240037ba9458a9c5fccc8e98d432ba2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1917629387&rft_id=info:pmid/28656667&rft_jstor_id=90011130&rfr_iscdi=true