Loading…

Decrease in heathland soil labile organic carbon under future atmospheric and climatic conditions

Characterization of the impacts of climate change on terrestrial carbon (C) cycling is important due to possible feedback mechanisms to atmospheric CO₂ concentrations. We investigated soil organic matter (SOM) dynamics in the A1 and A2 horizons (~ 0–5.1 and ~ 5.1–12.3 cm depth, respectively) of a sh...

Full description

Saved in:
Bibliographic Details
Published in:Biogeochemistry 2017-03, Vol.133 (1), p.17-36
Main Authors: Thaysen, E. M., Reinsch, S., Larsen, K. S., Ambus, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-71d0386c9b0edb53698238aa2df7e4ebc9e50dbc64449d6b3f3fcc6c7c85755f3
cites cdi_FETCH-LOGICAL-c414t-71d0386c9b0edb53698238aa2df7e4ebc9e50dbc64449d6b3f3fcc6c7c85755f3
container_end_page 36
container_issue 1
container_start_page 17
container_title Biogeochemistry
container_volume 133
creator Thaysen, E. M.
Reinsch, S.
Larsen, K. S.
Ambus, P.
description Characterization of the impacts of climate change on terrestrial carbon (C) cycling is important due to possible feedback mechanisms to atmospheric CO₂ concentrations. We investigated soil organic matter (SOM) dynamics in the A1 and A2 horizons (~ 0–5.1 and ~ 5.1–12.3 cm depth, respectively) of a shrubland grass (Deschampsia flexuosa) after 8 years of exposure to: elevated CO₂ (CO₂), summer drought (D), warming (T) and all combinations hereof, with TDCO₂ simulating environmental conditions for Denmark in 2075. The mean C residence time was highest in the heavy fraction (HF), followed by the occluded light fraction and the free light fraction (fLF), and it increased with soil depth, suggesting that C was stabilized on minerals at depth. A2 horizon SOM was susceptible to climate change whereas A1 horizon SOM was largely unaffected. The A2 horizon fLF and HF organic C stocks decreased by 43 and 23% in response to warming, respectively. Organic nitrogen (N) stocks of the A2 horizon fLF and HF decreased by 50 and 17%, respectively. Drought decreased the A2 horizon fLF N stock by 38%. Elevated CO₂ decreased the A2 horizon fLF C stock by 39% and the fLF N stock by 50%. Under TDCO₂, A2 horizon fLF C and N stocks decreased by 22 and 40%, respectively. Overall, our results indicate that shrubland SOM will be susceptible to increased turnover and associated net C and N losses in the future.
doi_str_mv 10.1007/s10533-017-0303-3
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1888957510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48720760</jstor_id><sourcerecordid>48720760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-71d0386c9b0edb53698238aa2df7e4ebc9e50dbc64449d6b3f3fcc6c7c85755f3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF4ewIUQcOOmetIkTboU7yC4UXAX0vTU6dBJxqRd-PZmqIi4cHUW5_vO5SfkhMEFA1CXiYHkvACmCuDAC75DFkwqXkgm33bJAlili1JWfJ8cpLQCgFoBXxB7gy6iTUh7T5dox-VgfUtT6Ac62KYfkIb4bn3vqLOxCZ5OvsVIu2mcIlI7rkPaLDHm_tZzQ7-24xYOvu3HPvh0RPY6OyQ8_q6H5PXu9uX6oXh6vn-8vnoqnGBiLBRrgevK1Q1g20he1brk2tqy7RQKbFyNEtrGVUKIuq0a3vHOucopp6WSsuOH5Hyeu4nhY8I0mnWfHA75HwxTMkxrXWeUQUbP_qCrMEWfr8uUqkXNBLBMsZlyMaQUsTObmL-Ln4aB2YZu5tBNDt1sQzc8O-XspMz6d4y_Jv8jnc7SKo0h_mwRWpWgKuBf_wGO8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879491401</pqid></control><display><type>article</type><title>Decrease in heathland soil labile organic carbon under future atmospheric and climatic conditions</title><source>Springer Link</source><source>JSTOR Archival Journals</source><creator>Thaysen, E. M. ; Reinsch, S. ; Larsen, K. S. ; Ambus, P.</creator><creatorcontrib>Thaysen, E. M. ; Reinsch, S. ; Larsen, K. S. ; Ambus, P.</creatorcontrib><description>Characterization of the impacts of climate change on terrestrial carbon (C) cycling is important due to possible feedback mechanisms to atmospheric CO₂ concentrations. We investigated soil organic matter (SOM) dynamics in the A1 and A2 horizons (~ 0–5.1 and ~ 5.1–12.3 cm depth, respectively) of a shrubland grass (Deschampsia flexuosa) after 8 years of exposure to: elevated CO₂ (CO₂), summer drought (D), warming (T) and all combinations hereof, with TDCO₂ simulating environmental conditions for Denmark in 2075. The mean C residence time was highest in the heavy fraction (HF), followed by the occluded light fraction and the free light fraction (fLF), and it increased with soil depth, suggesting that C was stabilized on minerals at depth. A2 horizon SOM was susceptible to climate change whereas A1 horizon SOM was largely unaffected. The A2 horizon fLF and HF organic C stocks decreased by 43 and 23% in response to warming, respectively. Organic nitrogen (N) stocks of the A2 horizon fLF and HF decreased by 50 and 17%, respectively. Drought decreased the A2 horizon fLF N stock by 38%. Elevated CO₂ decreased the A2 horizon fLF C stock by 39% and the fLF N stock by 50%. Under TDCO₂, A2 horizon fLF C and N stocks decreased by 22 and 40%, respectively. Overall, our results indicate that shrubland SOM will be susceptible to increased turnover and associated net C and N losses in the future.</description><identifier>ISSN: 0168-2563</identifier><identifier>EISSN: 1573-515X</identifier><identifier>DOI: 10.1007/s10533-017-0303-3</identifier><language>eng</language><publisher>Cham: Springer Science + Business Media</publisher><subject>Atmospheric sciences ; Biogeosciences ; Carbon cycle ; Carbon dioxide ; Carbon sequestration ; Climate change ; Climatic conditions ; Deschampsia flexuosa ; Drought ; Earth and Environmental Science ; Earth Sciences ; Ecosystems ; Environmental Chemistry ; Environmental conditions ; Environmental impact ; Life Sciences ; Nitrogen ; Organic carbon ; Organic matter ; Organic nitrogen ; ORIGINAL PAPERS ; Shrublands ; Soil depth ; Soil organic matter</subject><ispartof>Biogeochemistry, 2017-03, Vol.133 (1), p.17-36</ispartof><rights>Springer International Publishing Switzerland 2017</rights><rights>Biogeochemistry is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-71d0386c9b0edb53698238aa2df7e4ebc9e50dbc64449d6b3f3fcc6c7c85755f3</citedby><cites>FETCH-LOGICAL-c414t-71d0386c9b0edb53698238aa2df7e4ebc9e50dbc64449d6b3f3fcc6c7c85755f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48720760$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48720760$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,783,787,27936,27937,58566,58799</link.rule.ids></links><search><creatorcontrib>Thaysen, E. M.</creatorcontrib><creatorcontrib>Reinsch, S.</creatorcontrib><creatorcontrib>Larsen, K. S.</creatorcontrib><creatorcontrib>Ambus, P.</creatorcontrib><title>Decrease in heathland soil labile organic carbon under future atmospheric and climatic conditions</title><title>Biogeochemistry</title><addtitle>Biogeochemistry</addtitle><description>Characterization of the impacts of climate change on terrestrial carbon (C) cycling is important due to possible feedback mechanisms to atmospheric CO₂ concentrations. We investigated soil organic matter (SOM) dynamics in the A1 and A2 horizons (~ 0–5.1 and ~ 5.1–12.3 cm depth, respectively) of a shrubland grass (Deschampsia flexuosa) after 8 years of exposure to: elevated CO₂ (CO₂), summer drought (D), warming (T) and all combinations hereof, with TDCO₂ simulating environmental conditions for Denmark in 2075. The mean C residence time was highest in the heavy fraction (HF), followed by the occluded light fraction and the free light fraction (fLF), and it increased with soil depth, suggesting that C was stabilized on minerals at depth. A2 horizon SOM was susceptible to climate change whereas A1 horizon SOM was largely unaffected. The A2 horizon fLF and HF organic C stocks decreased by 43 and 23% in response to warming, respectively. Organic nitrogen (N) stocks of the A2 horizon fLF and HF decreased by 50 and 17%, respectively. Drought decreased the A2 horizon fLF N stock by 38%. Elevated CO₂ decreased the A2 horizon fLF C stock by 39% and the fLF N stock by 50%. Under TDCO₂, A2 horizon fLF C and N stocks decreased by 22 and 40%, respectively. Overall, our results indicate that shrubland SOM will be susceptible to increased turnover and associated net C and N losses in the future.</description><subject>Atmospheric sciences</subject><subject>Biogeosciences</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Climate change</subject><subject>Climatic conditions</subject><subject>Deschampsia flexuosa</subject><subject>Drought</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Environmental Chemistry</subject><subject>Environmental conditions</subject><subject>Environmental impact</subject><subject>Life Sciences</subject><subject>Nitrogen</subject><subject>Organic carbon</subject><subject>Organic matter</subject><subject>Organic nitrogen</subject><subject>ORIGINAL PAPERS</subject><subject>Shrublands</subject><subject>Soil depth</subject><subject>Soil organic matter</subject><issn>0168-2563</issn><issn>1573-515X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOF4ewIUQcOOmetIkTboU7yC4UXAX0vTU6dBJxqRd-PZmqIi4cHUW5_vO5SfkhMEFA1CXiYHkvACmCuDAC75DFkwqXkgm33bJAlili1JWfJ8cpLQCgFoBXxB7gy6iTUh7T5dox-VgfUtT6Ac62KYfkIb4bn3vqLOxCZ5OvsVIu2mcIlI7rkPaLDHm_tZzQ7-24xYOvu3HPvh0RPY6OyQ8_q6H5PXu9uX6oXh6vn-8vnoqnGBiLBRrgevK1Q1g20he1brk2tqy7RQKbFyNEtrGVUKIuq0a3vHOucopp6WSsuOH5Hyeu4nhY8I0mnWfHA75HwxTMkxrXWeUQUbP_qCrMEWfr8uUqkXNBLBMsZlyMaQUsTObmL-Ln4aB2YZu5tBNDt1sQzc8O-XspMz6d4y_Jv8jnc7SKo0h_mwRWpWgKuBf_wGO8g</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Thaysen, E. M.</creator><creator>Reinsch, S.</creator><creator>Larsen, K. S.</creator><creator>Ambus, P.</creator><general>Springer Science + Business Media</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20170301</creationdate><title>Decrease in heathland soil labile organic carbon under future atmospheric and climatic conditions</title><author>Thaysen, E. M. ; Reinsch, S. ; Larsen, K. S. ; Ambus, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-71d0386c9b0edb53698238aa2df7e4ebc9e50dbc64449d6b3f3fcc6c7c85755f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atmospheric sciences</topic><topic>Biogeosciences</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Climate change</topic><topic>Climatic conditions</topic><topic>Deschampsia flexuosa</topic><topic>Drought</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Environmental Chemistry</topic><topic>Environmental conditions</topic><topic>Environmental impact</topic><topic>Life Sciences</topic><topic>Nitrogen</topic><topic>Organic carbon</topic><topic>Organic matter</topic><topic>Organic nitrogen</topic><topic>ORIGINAL PAPERS</topic><topic>Shrublands</topic><topic>Soil depth</topic><topic>Soil organic matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thaysen, E. M.</creatorcontrib><creatorcontrib>Reinsch, S.</creatorcontrib><creatorcontrib>Larsen, K. S.</creatorcontrib><creatorcontrib>Ambus, P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Biogeochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thaysen, E. M.</au><au>Reinsch, S.</au><au>Larsen, K. S.</au><au>Ambus, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decrease in heathland soil labile organic carbon under future atmospheric and climatic conditions</atitle><jtitle>Biogeochemistry</jtitle><stitle>Biogeochemistry</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>133</volume><issue>1</issue><spage>17</spage><epage>36</epage><pages>17-36</pages><issn>0168-2563</issn><eissn>1573-515X</eissn><abstract>Characterization of the impacts of climate change on terrestrial carbon (C) cycling is important due to possible feedback mechanisms to atmospheric CO₂ concentrations. We investigated soil organic matter (SOM) dynamics in the A1 and A2 horizons (~ 0–5.1 and ~ 5.1–12.3 cm depth, respectively) of a shrubland grass (Deschampsia flexuosa) after 8 years of exposure to: elevated CO₂ (CO₂), summer drought (D), warming (T) and all combinations hereof, with TDCO₂ simulating environmental conditions for Denmark in 2075. The mean C residence time was highest in the heavy fraction (HF), followed by the occluded light fraction and the free light fraction (fLF), and it increased with soil depth, suggesting that C was stabilized on minerals at depth. A2 horizon SOM was susceptible to climate change whereas A1 horizon SOM was largely unaffected. The A2 horizon fLF and HF organic C stocks decreased by 43 and 23% in response to warming, respectively. Organic nitrogen (N) stocks of the A2 horizon fLF and HF decreased by 50 and 17%, respectively. Drought decreased the A2 horizon fLF N stock by 38%. Elevated CO₂ decreased the A2 horizon fLF C stock by 39% and the fLF N stock by 50%. Under TDCO₂, A2 horizon fLF C and N stocks decreased by 22 and 40%, respectively. Overall, our results indicate that shrubland SOM will be susceptible to increased turnover and associated net C and N losses in the future.</abstract><cop>Cham</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s10533-017-0303-3</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-2563
ispartof Biogeochemistry, 2017-03, Vol.133 (1), p.17-36
issn 0168-2563
1573-515X
language eng
recordid cdi_proquest_miscellaneous_1888957510
source Springer Link; JSTOR Archival Journals
subjects Atmospheric sciences
Biogeosciences
Carbon cycle
Carbon dioxide
Carbon sequestration
Climate change
Climatic conditions
Deschampsia flexuosa
Drought
Earth and Environmental Science
Earth Sciences
Ecosystems
Environmental Chemistry
Environmental conditions
Environmental impact
Life Sciences
Nitrogen
Organic carbon
Organic matter
Organic nitrogen
ORIGINAL PAPERS
Shrublands
Soil depth
Soil organic matter
title Decrease in heathland soil labile organic carbon under future atmospheric and climatic conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-17T11%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decrease%20in%20heathland%20soil%20labile%20organic%20carbon%20under%20future%20atmospheric%20and%20climatic%20conditions&rft.jtitle=Biogeochemistry&rft.au=Thaysen,%20E.%20M.&rft.date=2017-03-01&rft.volume=133&rft.issue=1&rft.spage=17&rft.epage=36&rft.pages=17-36&rft.issn=0168-2563&rft.eissn=1573-515X&rft_id=info:doi/10.1007/s10533-017-0303-3&rft_dat=%3Cjstor_proqu%3E48720760%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-71d0386c9b0edb53698238aa2df7e4ebc9e50dbc64449d6b3f3fcc6c7c85755f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1879491401&rft_id=info:pmid/&rft_jstor_id=48720760&rfr_iscdi=true