Loading…

Quasi-Vertical Profiles—A New Way to Look at Polarimetric Radar Data

A novel methodology is introduced for processing and presenting polarimetric data collected by weather surveillance radars. It involves azimuthal averaging of radar reflectivity Z, differential reflectivity Z sub(DR), cross-correlation coefficient rho sub(hv), and differential phase Phi sub(DP) at h...

Full description

Saved in:
Bibliographic Details
Published in:Journal of atmospheric and oceanic technology 2016-03, Vol.33 (3), p.551-562
Main Authors: Ryzhkov, Alexander, Zhang, Pengfei, Reeves, Heather, Kumjian, Matthew, Tschallener, Timo, Trömel, Silke, Simmer, Clemens
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c476t-149c2c42e2b140558011131f12b6d5c1a000035c03f05b91f65768910572feb13
cites
container_end_page 562
container_issue 3
container_start_page 551
container_title Journal of atmospheric and oceanic technology
container_volume 33
creator Ryzhkov, Alexander
Zhang, Pengfei
Reeves, Heather
Kumjian, Matthew
Tschallener, Timo
Trömel, Silke
Simmer, Clemens
description A novel methodology is introduced for processing and presenting polarimetric data collected by weather surveillance radars. It involves azimuthal averaging of radar reflectivity Z, differential reflectivity Z sub(DR), cross-correlation coefficient rho sub(hv), and differential phase Phi sub(DP) at high antenna elevation, and presenting resulting quasi-vertical profiles (QVPs) in a height-versus-time format. Multiple examples of QVPs retrieved from the data collected by S-, C-, and X-band dual-polarization radars at elevations ranging from 6.4 degree to 28 degree illustrate advantages of the QVP technique. The benefits include an ability to examine the temporal evolution of microphysical processes governing precipitation production and to compare polarimetric data obtained from the scanning surveillance weather radars with observations made by vertically looking remote sensors, such as wind profilers, lidars, radiometers, cloud radars, and radars operating on spaceborne and airborne platforms. Continuous monitoring of the melting layer and the layer of dendritic growth with high vertical resolution, and the possible opportunity to discriminate between the processes of snow aggregation and riming, constitute other potential benefits of the suggested methodology.
doi_str_mv 10.1175/JTECH-D-15-0020.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884123989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4025862171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-149c2c42e2b140558011131f12b6d5c1a000035c03f05b91f65768910572feb13</originalsourceid><addsrcrecordid>eNqNkc9KAzEQh4MoWKsP4C3gxcvqTLLZzR5La_1D0SpVjyFNs7B129RkF-nNh_AJfRJT68mDeBoYPoZvfj9CjhHOEHNxfjO56F8lgwRFAsDicod0UDBIIGXZLulAzosERM72yUEIcwBAjlmHDO9bHarkyfqmMrqmY-_Kqrbh8_2jR2_tG33Wa9o4OnLuheqGjl2tfbWwja8MfdAz7elAN_qQ7JW6DvboZ3bJ4_BiEo1Gd5fX_d4oMWmeNQmmhWEmZZZNMQUhJCBGjxLZNJsJgzp6ARcGeAliWmCZiTyTBW7ESztF3iWn27sr715bGxq1qIKxda2X1rVBoZQpMl7I4h9onsuUi5hMl5z8Queu9cv4iGKSZUyg4PAXhblEIaJlGincUsa7ELwt1Srmpf1aIahNVeq7KjVQKNSmKoX8C23UgqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781550574</pqid></control><display><type>article</type><title>Quasi-Vertical Profiles—A New Way to Look at Polarimetric Radar Data</title><source>World Web Science Journals</source><creator>Ryzhkov, Alexander ; Zhang, Pengfei ; Reeves, Heather ; Kumjian, Matthew ; Tschallener, Timo ; Trömel, Silke ; Simmer, Clemens</creator><creatorcontrib>Ryzhkov, Alexander ; Zhang, Pengfei ; Reeves, Heather ; Kumjian, Matthew ; Tschallener, Timo ; Trömel, Silke ; Simmer, Clemens</creatorcontrib><description>A novel methodology is introduced for processing and presenting polarimetric data collected by weather surveillance radars. It involves azimuthal averaging of radar reflectivity Z, differential reflectivity Z sub(DR), cross-correlation coefficient rho sub(hv), and differential phase Phi sub(DP) at high antenna elevation, and presenting resulting quasi-vertical profiles (QVPs) in a height-versus-time format. Multiple examples of QVPs retrieved from the data collected by S-, C-, and X-band dual-polarization radars at elevations ranging from 6.4 degree to 28 degree illustrate advantages of the QVP technique. The benefits include an ability to examine the temporal evolution of microphysical processes governing precipitation production and to compare polarimetric data obtained from the scanning surveillance weather radars with observations made by vertically looking remote sensors, such as wind profilers, lidars, radiometers, cloud radars, and radars operating on spaceborne and airborne platforms. Continuous monitoring of the melting layer and the layer of dendritic growth with high vertical resolution, and the possible opportunity to discriminate between the processes of snow aggregation and riming, constitute other potential benefits of the suggested methodology.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-15-0020.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Aggregation ; Antennas ; Clouds ; Correlation coefficient ; Correlation coefficients ; Cross correlation ; Dual polarization radar ; Elevation ; Estimates ; Marine ; Methodology ; Methods ; Microwave imagery ; Polarimetric radar ; Polarimetry ; Precipitation ; Profilers ; Radar ; Radar data ; Radar polarimetry ; Radar reflectivity ; Radiometers ; Reflectance ; Remote sensors ; Snow ; Standard deviation ; Superhigh frequencies ; Surveillance ; Variables ; Vertical profiles ; Weather ; Work platforms ; X-band</subject><ispartof>Journal of atmospheric and oceanic technology, 2016-03, Vol.33 (3), p.551-562</ispartof><rights>Copyright American Meteorological Society Mar 2016</rights><rights>Copyright American Meteorological Society 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-149c2c42e2b140558011131f12b6d5c1a000035c03f05b91f65768910572feb13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Ryzhkov, Alexander</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Reeves, Heather</creatorcontrib><creatorcontrib>Kumjian, Matthew</creatorcontrib><creatorcontrib>Tschallener, Timo</creatorcontrib><creatorcontrib>Trömel, Silke</creatorcontrib><creatorcontrib>Simmer, Clemens</creatorcontrib><title>Quasi-Vertical Profiles—A New Way to Look at Polarimetric Radar Data</title><title>Journal of atmospheric and oceanic technology</title><description>A novel methodology is introduced for processing and presenting polarimetric data collected by weather surveillance radars. It involves azimuthal averaging of radar reflectivity Z, differential reflectivity Z sub(DR), cross-correlation coefficient rho sub(hv), and differential phase Phi sub(DP) at high antenna elevation, and presenting resulting quasi-vertical profiles (QVPs) in a height-versus-time format. Multiple examples of QVPs retrieved from the data collected by S-, C-, and X-band dual-polarization radars at elevations ranging from 6.4 degree to 28 degree illustrate advantages of the QVP technique. The benefits include an ability to examine the temporal evolution of microphysical processes governing precipitation production and to compare polarimetric data obtained from the scanning surveillance weather radars with observations made by vertically looking remote sensors, such as wind profilers, lidars, radiometers, cloud radars, and radars operating on spaceborne and airborne platforms. Continuous monitoring of the melting layer and the layer of dendritic growth with high vertical resolution, and the possible opportunity to discriminate between the processes of snow aggregation and riming, constitute other potential benefits of the suggested methodology.</description><subject>Aggregation</subject><subject>Antennas</subject><subject>Clouds</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Cross correlation</subject><subject>Dual polarization radar</subject><subject>Elevation</subject><subject>Estimates</subject><subject>Marine</subject><subject>Methodology</subject><subject>Methods</subject><subject>Microwave imagery</subject><subject>Polarimetric radar</subject><subject>Polarimetry</subject><subject>Precipitation</subject><subject>Profilers</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar polarimetry</subject><subject>Radar reflectivity</subject><subject>Radiometers</subject><subject>Reflectance</subject><subject>Remote sensors</subject><subject>Snow</subject><subject>Standard deviation</subject><subject>Superhigh frequencies</subject><subject>Surveillance</subject><subject>Variables</subject><subject>Vertical profiles</subject><subject>Weather</subject><subject>Work platforms</subject><subject>X-band</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc9KAzEQh4MoWKsP4C3gxcvqTLLZzR5La_1D0SpVjyFNs7B129RkF-nNh_AJfRJT68mDeBoYPoZvfj9CjhHOEHNxfjO56F8lgwRFAsDicod0UDBIIGXZLulAzosERM72yUEIcwBAjlmHDO9bHarkyfqmMrqmY-_Kqrbh8_2jR2_tG33Wa9o4OnLuheqGjl2tfbWwja8MfdAz7elAN_qQ7JW6DvboZ3bJ4_BiEo1Gd5fX_d4oMWmeNQmmhWEmZZZNMQUhJCBGjxLZNJsJgzp6ARcGeAliWmCZiTyTBW7ESztF3iWn27sr715bGxq1qIKxda2X1rVBoZQpMl7I4h9onsuUi5hMl5z8Queu9cv4iGKSZUyg4PAXhblEIaJlGincUsa7ELwt1Srmpf1aIahNVeq7KjVQKNSmKoX8C23UgqE</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Ryzhkov, Alexander</creator><creator>Zhang, Pengfei</creator><creator>Reeves, Heather</creator><creator>Kumjian, Matthew</creator><creator>Tschallener, Timo</creator><creator>Trömel, Silke</creator><creator>Simmer, Clemens</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20160301</creationdate><title>Quasi-Vertical Profiles—A New Way to Look at Polarimetric Radar Data</title><author>Ryzhkov, Alexander ; Zhang, Pengfei ; Reeves, Heather ; Kumjian, Matthew ; Tschallener, Timo ; Trömel, Silke ; Simmer, Clemens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-149c2c42e2b140558011131f12b6d5c1a000035c03f05b91f65768910572feb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aggregation</topic><topic>Antennas</topic><topic>Clouds</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Cross correlation</topic><topic>Dual polarization radar</topic><topic>Elevation</topic><topic>Estimates</topic><topic>Marine</topic><topic>Methodology</topic><topic>Methods</topic><topic>Microwave imagery</topic><topic>Polarimetric radar</topic><topic>Polarimetry</topic><topic>Precipitation</topic><topic>Profilers</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar polarimetry</topic><topic>Radar reflectivity</topic><topic>Radiometers</topic><topic>Reflectance</topic><topic>Remote sensors</topic><topic>Snow</topic><topic>Standard deviation</topic><topic>Superhigh frequencies</topic><topic>Surveillance</topic><topic>Variables</topic><topic>Vertical profiles</topic><topic>Weather</topic><topic>Work platforms</topic><topic>X-band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryzhkov, Alexander</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Reeves, Heather</creatorcontrib><creatorcontrib>Kumjian, Matthew</creatorcontrib><creatorcontrib>Tschallener, Timo</creatorcontrib><creatorcontrib>Trömel, Silke</creatorcontrib><creatorcontrib>Simmer, Clemens</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryzhkov, Alexander</au><au>Zhang, Pengfei</au><au>Reeves, Heather</au><au>Kumjian, Matthew</au><au>Tschallener, Timo</au><au>Trömel, Silke</au><au>Simmer, Clemens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-Vertical Profiles—A New Way to Look at Polarimetric Radar Data</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>33</volume><issue>3</issue><spage>551</spage><epage>562</epage><pages>551-562</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>A novel methodology is introduced for processing and presenting polarimetric data collected by weather surveillance radars. It involves azimuthal averaging of radar reflectivity Z, differential reflectivity Z sub(DR), cross-correlation coefficient rho sub(hv), and differential phase Phi sub(DP) at high antenna elevation, and presenting resulting quasi-vertical profiles (QVPs) in a height-versus-time format. Multiple examples of QVPs retrieved from the data collected by S-, C-, and X-band dual-polarization radars at elevations ranging from 6.4 degree to 28 degree illustrate advantages of the QVP technique. The benefits include an ability to examine the temporal evolution of microphysical processes governing precipitation production and to compare polarimetric data obtained from the scanning surveillance weather radars with observations made by vertically looking remote sensors, such as wind profilers, lidars, radiometers, cloud radars, and radars operating on spaceborne and airborne platforms. Continuous monitoring of the melting layer and the layer of dendritic growth with high vertical resolution, and the possible opportunity to discriminate between the processes of snow aggregation and riming, constitute other potential benefits of the suggested methodology.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-15-0020.1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2016-03, Vol.33 (3), p.551-562
issn 0739-0572
1520-0426
language eng
recordid cdi_proquest_miscellaneous_1884123989
source World Web Science Journals
subjects Aggregation
Antennas
Clouds
Correlation coefficient
Correlation coefficients
Cross correlation
Dual polarization radar
Elevation
Estimates
Marine
Methodology
Methods
Microwave imagery
Polarimetric radar
Polarimetry
Precipitation
Profilers
Radar
Radar data
Radar polarimetry
Radar reflectivity
Radiometers
Reflectance
Remote sensors
Snow
Standard deviation
Superhigh frequencies
Surveillance
Variables
Vertical profiles
Weather
Work platforms
X-band
title Quasi-Vertical Profiles—A New Way to Look at Polarimetric Radar Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T15%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-Vertical%20Profiles%E2%80%94A%20New%20Way%20to%20Look%20at%20Polarimetric%20Radar%20Data&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Ryzhkov,%20Alexander&rft.date=2016-03-01&rft.volume=33&rft.issue=3&rft.spage=551&rft.epage=562&rft.pages=551-562&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-15-0020.1&rft_dat=%3Cproquest_cross%3E4025862171%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-149c2c42e2b140558011131f12b6d5c1a000035c03f05b91f65768910572feb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1781550574&rft_id=info:pmid/&rfr_iscdi=true