Loading…

Self‐Assembly of Semiconducting Polymer Amphiphiles for In Vivo Photoacoustic Imaging

Despite the advantages of semiconducting polymer nanoparticles (SPNs) over other inorganic nanoparticles for photoacoustic (PA) imaging, their synthetic method is generally limited to nanoprecipitation, which is likely to cause the issue of nanoparticle dissociation. The synthesis of near‐infrared (...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2017-02, Vol.27 (8), p.np-n/a
Main Authors: Xie, Chen, Zhen, Xu, Lei, Qunli, Ni, Ran, Pu, Kanyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4567-b522593424b1006ef2283fd35ab3186d47dac92fc39b1dbd937417e694f129703
cites cdi_FETCH-LOGICAL-c4567-b522593424b1006ef2283fd35ab3186d47dac92fc39b1dbd937417e694f129703
container_end_page n/a
container_issue 8
container_start_page np
container_title Advanced functional materials
container_volume 27
creator Xie, Chen
Zhen, Xu
Lei, Qunli
Ni, Ran
Pu, Kanyi
description Despite the advantages of semiconducting polymer nanoparticles (SPNs) over other inorganic nanoparticles for photoacoustic (PA) imaging, their synthetic method is generally limited to nanoprecipitation, which is likely to cause the issue of nanoparticle dissociation. The synthesis of near‐infrared (NIR) absorbing semiconducting polymer amphiphiles (SPAs) that can spontaneously self‐assemble into homogeneous nanoparticles for in vivo PA imaging is reported. As compared with their counterpart nanoparticles (SPN1) prepared through nanoprecipitation, SPAs generally have higher fluorescence quantum yields but similar size and PA brightness, making them superior over SPN1. Optical and simulation studies reveal that the poly(ethylene glycol) (PEG) grafting density plays a critical role in determining the packing of SP segments inside the core of nanoparticles, consequently affecting the optical properties. The small size and structurally stable nanostructure, in conjunction with a dense PEG shell, allow SPAs to passively target tumors of living mice after systemic administration, permitting both PA and fluorescence imaging of the tumors at signals that are ≈1.5‐fold higher than that of liver. This study thus not only provides the first generation of amphiphilic optically active polymers for PA imaging, but also highlights the molecular guidelines for the development of organic NIR imaging nanomaterials. Near‐infrared absorbing semiconducting polymer amphiphiles (SPAs) that can spontaneously self‐assemble into homogenous nanoparticles are synthesized. The small size and structurally stable nanostructure in conjunction with a dense poly(ethylene glycol) shell allow SPAs to passively target tumors of living mice after systemic administration, permitting both photoacoustic and fluorescence imaging of the tumors.
doi_str_mv 10.1002/adfm.201605397
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884115550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884115550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4567-b522593424b1006ef2283fd35ab3186d47dac92fc39b1dbd937417e694f129703</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavnhe8eEnd2d187DFUq4WKhfp1W5LNbpuSZGs2UXLzJ_gb_SWmVBS8CAMzh-cdZh6EToGMgBB6kWSmHFECAfGZCPfQAAIIPEZotP8zw_MhOnJuTQiEIeMD9LTQhfl8_4id02VadNgavNBlrmyVtarJqyWe26IrdY3jcrPK-yq0w8bWeFrhx_zV4vnKNjZRtnVNrvC0TJZ96hgdmKRw-uS7D9HD5Op-fOPN7q6n43jmKe4HoZf6lPqCccrT_odAG0ojZjLmJymDKMh4mCVKUKOYSCFLM8FCDqEOBDdARUjYEJ3v9m5q-9Jq18gyd0oXRVLp_iIJUcQBfN_fomd_0LVt66q_ToKghDMKhPXUaEep2jpXayM3dV4mdSeByK1nufUsfzz3AbELvPVmun9oGV9Obn-zX0frgXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920432103</pqid></control><display><type>article</type><title>Self‐Assembly of Semiconducting Polymer Amphiphiles for In Vivo Photoacoustic Imaging</title><source>Wiley Online Library</source><creator>Xie, Chen ; Zhen, Xu ; Lei, Qunli ; Ni, Ran ; Pu, Kanyi</creator><creatorcontrib>Xie, Chen ; Zhen, Xu ; Lei, Qunli ; Ni, Ran ; Pu, Kanyi</creatorcontrib><description>Despite the advantages of semiconducting polymer nanoparticles (SPNs) over other inorganic nanoparticles for photoacoustic (PA) imaging, their synthetic method is generally limited to nanoprecipitation, which is likely to cause the issue of nanoparticle dissociation. The synthesis of near‐infrared (NIR) absorbing semiconducting polymer amphiphiles (SPAs) that can spontaneously self‐assemble into homogeneous nanoparticles for in vivo PA imaging is reported. As compared with their counterpart nanoparticles (SPN1) prepared through nanoprecipitation, SPAs generally have higher fluorescence quantum yields but similar size and PA brightness, making them superior over SPN1. Optical and simulation studies reveal that the poly(ethylene glycol) (PEG) grafting density plays a critical role in determining the packing of SP segments inside the core of nanoparticles, consequently affecting the optical properties. The small size and structurally stable nanostructure, in conjunction with a dense PEG shell, allow SPAs to passively target tumors of living mice after systemic administration, permitting both PA and fluorescence imaging of the tumors at signals that are ≈1.5‐fold higher than that of liver. This study thus not only provides the first generation of amphiphilic optically active polymers for PA imaging, but also highlights the molecular guidelines for the development of organic NIR imaging nanomaterials. Near‐infrared absorbing semiconducting polymer amphiphiles (SPAs) that can spontaneously self‐assemble into homogenous nanoparticles are synthesized. The small size and structurally stable nanostructure in conjunction with a dense poly(ethylene glycol) shell allow SPAs to passively target tumors of living mice after systemic administration, permitting both photoacoustic and fluorescence imaging of the tumors.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201605397</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Brightness ; Chemical synthesis ; Fluorescence ; Grafting ; Imaging ; Lithosphere ; Liver ; Materials science ; Mice ; Nanomaterials ; Nanoparticles ; Nanostructure ; Near infrared radiation ; Optical activity ; Optical properties ; photoacoustic imaging ; Polyethylene glycol ; polymer amphiphiles ; Polymers ; Segments ; Self assembly ; Spas ; Synthesis (chemistry) ; Tumors</subject><ispartof>Advanced functional materials, 2017-02, Vol.27 (8), p.np-n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4567-b522593424b1006ef2283fd35ab3186d47dac92fc39b1dbd937417e694f129703</citedby><cites>FETCH-LOGICAL-c4567-b522593424b1006ef2283fd35ab3186d47dac92fc39b1dbd937417e694f129703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201605397$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201605397$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids></links><search><creatorcontrib>Xie, Chen</creatorcontrib><creatorcontrib>Zhen, Xu</creatorcontrib><creatorcontrib>Lei, Qunli</creatorcontrib><creatorcontrib>Ni, Ran</creatorcontrib><creatorcontrib>Pu, Kanyi</creatorcontrib><title>Self‐Assembly of Semiconducting Polymer Amphiphiles for In Vivo Photoacoustic Imaging</title><title>Advanced functional materials</title><description>Despite the advantages of semiconducting polymer nanoparticles (SPNs) over other inorganic nanoparticles for photoacoustic (PA) imaging, their synthetic method is generally limited to nanoprecipitation, which is likely to cause the issue of nanoparticle dissociation. The synthesis of near‐infrared (NIR) absorbing semiconducting polymer amphiphiles (SPAs) that can spontaneously self‐assemble into homogeneous nanoparticles for in vivo PA imaging is reported. As compared with their counterpart nanoparticles (SPN1) prepared through nanoprecipitation, SPAs generally have higher fluorescence quantum yields but similar size and PA brightness, making them superior over SPN1. Optical and simulation studies reveal that the poly(ethylene glycol) (PEG) grafting density plays a critical role in determining the packing of SP segments inside the core of nanoparticles, consequently affecting the optical properties. The small size and structurally stable nanostructure, in conjunction with a dense PEG shell, allow SPAs to passively target tumors of living mice after systemic administration, permitting both PA and fluorescence imaging of the tumors at signals that are ≈1.5‐fold higher than that of liver. This study thus not only provides the first generation of amphiphilic optically active polymers for PA imaging, but also highlights the molecular guidelines for the development of organic NIR imaging nanomaterials. Near‐infrared absorbing semiconducting polymer amphiphiles (SPAs) that can spontaneously self‐assemble into homogenous nanoparticles are synthesized. The small size and structurally stable nanostructure in conjunction with a dense poly(ethylene glycol) shell allow SPAs to passively target tumors of living mice after systemic administration, permitting both photoacoustic and fluorescence imaging of the tumors.</description><subject>Brightness</subject><subject>Chemical synthesis</subject><subject>Fluorescence</subject><subject>Grafting</subject><subject>Imaging</subject><subject>Lithosphere</subject><subject>Liver</subject><subject>Materials science</subject><subject>Mice</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Near infrared radiation</subject><subject>Optical activity</subject><subject>Optical properties</subject><subject>photoacoustic imaging</subject><subject>Polyethylene glycol</subject><subject>polymer amphiphiles</subject><subject>Polymers</subject><subject>Segments</subject><subject>Self assembly</subject><subject>Spas</subject><subject>Synthesis (chemistry)</subject><subject>Tumors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavnhe8eEnd2d187DFUq4WKhfp1W5LNbpuSZGs2UXLzJ_gb_SWmVBS8CAMzh-cdZh6EToGMgBB6kWSmHFECAfGZCPfQAAIIPEZotP8zw_MhOnJuTQiEIeMD9LTQhfl8_4id02VadNgavNBlrmyVtarJqyWe26IrdY3jcrPK-yq0w8bWeFrhx_zV4vnKNjZRtnVNrvC0TJZ96hgdmKRw-uS7D9HD5Op-fOPN7q6n43jmKe4HoZf6lPqCccrT_odAG0ojZjLmJymDKMh4mCVKUKOYSCFLM8FCDqEOBDdARUjYEJ3v9m5q-9Jq18gyd0oXRVLp_iIJUcQBfN_fomd_0LVt66q_ToKghDMKhPXUaEep2jpXayM3dV4mdSeByK1nufUsfzz3AbELvPVmun9oGV9Obn-zX0frgXk</recordid><startdate>20170223</startdate><enddate>20170223</enddate><creator>Xie, Chen</creator><creator>Zhen, Xu</creator><creator>Lei, Qunli</creator><creator>Ni, Ran</creator><creator>Pu, Kanyi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170223</creationdate><title>Self‐Assembly of Semiconducting Polymer Amphiphiles for In Vivo Photoacoustic Imaging</title><author>Xie, Chen ; Zhen, Xu ; Lei, Qunli ; Ni, Ran ; Pu, Kanyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4567-b522593424b1006ef2283fd35ab3186d47dac92fc39b1dbd937417e694f129703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brightness</topic><topic>Chemical synthesis</topic><topic>Fluorescence</topic><topic>Grafting</topic><topic>Imaging</topic><topic>Lithosphere</topic><topic>Liver</topic><topic>Materials science</topic><topic>Mice</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Near infrared radiation</topic><topic>Optical activity</topic><topic>Optical properties</topic><topic>photoacoustic imaging</topic><topic>Polyethylene glycol</topic><topic>polymer amphiphiles</topic><topic>Polymers</topic><topic>Segments</topic><topic>Self assembly</topic><topic>Spas</topic><topic>Synthesis (chemistry)</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Chen</creatorcontrib><creatorcontrib>Zhen, Xu</creatorcontrib><creatorcontrib>Lei, Qunli</creatorcontrib><creatorcontrib>Ni, Ran</creatorcontrib><creatorcontrib>Pu, Kanyi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Chen</au><au>Zhen, Xu</au><au>Lei, Qunli</au><au>Ni, Ran</au><au>Pu, Kanyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Assembly of Semiconducting Polymer Amphiphiles for In Vivo Photoacoustic Imaging</atitle><jtitle>Advanced functional materials</jtitle><date>2017-02-23</date><risdate>2017</risdate><volume>27</volume><issue>8</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Despite the advantages of semiconducting polymer nanoparticles (SPNs) over other inorganic nanoparticles for photoacoustic (PA) imaging, their synthetic method is generally limited to nanoprecipitation, which is likely to cause the issue of nanoparticle dissociation. The synthesis of near‐infrared (NIR) absorbing semiconducting polymer amphiphiles (SPAs) that can spontaneously self‐assemble into homogeneous nanoparticles for in vivo PA imaging is reported. As compared with their counterpart nanoparticles (SPN1) prepared through nanoprecipitation, SPAs generally have higher fluorescence quantum yields but similar size and PA brightness, making them superior over SPN1. Optical and simulation studies reveal that the poly(ethylene glycol) (PEG) grafting density plays a critical role in determining the packing of SP segments inside the core of nanoparticles, consequently affecting the optical properties. The small size and structurally stable nanostructure, in conjunction with a dense PEG shell, allow SPAs to passively target tumors of living mice after systemic administration, permitting both PA and fluorescence imaging of the tumors at signals that are ≈1.5‐fold higher than that of liver. This study thus not only provides the first generation of amphiphilic optically active polymers for PA imaging, but also highlights the molecular guidelines for the development of organic NIR imaging nanomaterials. Near‐infrared absorbing semiconducting polymer amphiphiles (SPAs) that can spontaneously self‐assemble into homogenous nanoparticles are synthesized. The small size and structurally stable nanostructure in conjunction with a dense poly(ethylene glycol) shell allow SPAs to passively target tumors of living mice after systemic administration, permitting both photoacoustic and fluorescence imaging of the tumors.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201605397</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2017-02, Vol.27 (8), p.np-n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1884115550
source Wiley Online Library
subjects Brightness
Chemical synthesis
Fluorescence
Grafting
Imaging
Lithosphere
Liver
Materials science
Mice
Nanomaterials
Nanoparticles
Nanostructure
Near infrared radiation
Optical activity
Optical properties
photoacoustic imaging
Polyethylene glycol
polymer amphiphiles
Polymers
Segments
Self assembly
Spas
Synthesis (chemistry)
Tumors
title Self‐Assembly of Semiconducting Polymer Amphiphiles for In Vivo Photoacoustic Imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-29T22%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Assembly%20of%20Semiconducting%20Polymer%20Amphiphiles%20for%20In%20Vivo%20Photoacoustic%20Imaging&rft.jtitle=Advanced%20functional%20materials&rft.au=Xie,%20Chen&rft.date=2017-02-23&rft.volume=27&rft.issue=8&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201605397&rft_dat=%3Cproquest_cross%3E1884115550%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4567-b522593424b1006ef2283fd35ab3186d47dac92fc39b1dbd937417e694f129703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1920432103&rft_id=info:pmid/&rfr_iscdi=true