Loading…

A simplified analytical model for run-out prediction of flow slides in municipal solid waste landfills

Flow slides in municipal solid waste (MSW) landfills are common geoenvironmental issues in the urban environment and can pose a serious threat to the surrounding population and infrastructure. Prediction of the maximum run-out distance of flow slides in MSW landfills is therefore an essential part o...

Full description

Saved in:
Bibliographic Details
Published in:Landslides 2017-02, Vol.14 (1), p.99-107
Main Authors: Huang, Yu, Cheng, Hualin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flow slides in municipal solid waste (MSW) landfills are common geoenvironmental issues in the urban environment and can pose a serious threat to the surrounding population and infrastructure. Prediction of the maximum run-out distance of flow slides in MSW landfills is therefore an essential part of hazard and risk assessment in engineering design. Based on the framework for simple analysis originally developed by Hungr ( 1995 ), we propose a simplified analytical model for calculating dam breaks in a plastic fluid along a single inclined base. In the proposed model, a quarter-elliptical shape is used to describe the approximate configuration of the flow slide. Following this step, the physical laws relating to the conservation of mass and energy are used to calculate the potential flow. Of additional note is a boundary condition in mathematics relating to this simplified analytical model, which is also reported in this study. Taking the obvious mobility characteristics of the MSW at point of failure into consideration, a three-phase simplified model along double inclined bases has been further developed for run-out prediction of the flow slide in MSW landfill. The proposed three-phase model is then applied to estimate the maximum run-out distance of two typical flow failures of landfills located in Sarajevo and Bandung, which demonstrate the capability of the proposed simplified analytical model for use in hazard assessments of landfills.
ISSN:1612-510X
1612-5118
DOI:10.1007/s10346-016-0688-4