Loading…

Evolution mechanism of mesoporous silicon nanopillars grown by metal-assisted chemical etching and nanosphere lithography: correlation of Raman spectra and red photoluminescence

We have fabricated highly ordered, vertically aligned, high aspect ratio silicon nanopillars (SiNPLs) of diameter ~80 nm by combining metal-assisted chemical etching and nanosphere lithography. The evolution of surface morphology of porous silicon nanopillars has been explained, and the presence of...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2016-07, Vol.122 (7), p.1-10, Article 669
Main Authors: Karadan, Prajith, John, Siju, Anappara, Aji A., Narayana, Chandrabhas, Barshilia, Harish C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-5179aa70af9331ecee3d5747ac4296215bdc177d704c0c9ec702d3a7901cfa2e3
cites cdi_FETCH-LOGICAL-c321t-5179aa70af9331ecee3d5747ac4296215bdc177d704c0c9ec702d3a7901cfa2e3
container_end_page 10
container_issue 7
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 122
creator Karadan, Prajith
John, Siju
Anappara, Aji A.
Narayana, Chandrabhas
Barshilia, Harish C.
description We have fabricated highly ordered, vertically aligned, high aspect ratio silicon nanopillars (SiNPLs) of diameter ~80 nm by combining metal-assisted chemical etching and nanosphere lithography. The evolution of surface morphology of porous silicon nanopillars has been explained, and the presence of mesoporous structures was detected on the top of silicon nanopillars using field emission scanning electron microscopy. The mesoporosity of the SiNPLs is confirmed by Brunauer–Emmett–Teller measurements. The peak shift and the splitting of optical phonon modes into LO and TO modes in the micro-Raman spectra of mesoporous SiNPLs manifest the presence of 2–3 nm porous Si nanocrystallites ( P -SiNCs) on the top of SiNPLs and the size of crystallites was calculated using bond polarizability model for spherical phonon confinement. The origin of red luminescence is explained using quantum confinement (QC) and QC luminescent center models for the P -SiNCs, which is correlated with the micro-Raman spectra. Finally, we confirmed the origin of the red luminescence is from the P-SiNCs formed on surface of SiNPLs, highly desired for LED devices by suitably tailoring the substrate.
doi_str_mv 10.1007/s00339-016-0203-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880024262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880024262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-5179aa70af9331ecee3d5747ac4296215bdc177d704c0c9ec702d3a7901cfa2e3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEkvhB3DzkUtgbGfjhBuqyodUqVIFZ2vqTDauHDt4vKD9WfxD3F3O-DKy5n3m622atxLeSwDzgQG0HluQfQsKdDs8a3ay06qFXsPzZgdjZ9pBj_3L5hXzI9TXKbVr_tz8SuFYfIpiJbdg9LyKNNcPpy3ldGTBPnhX8xFj2nwImFkccvodxcOp6gqGFpk9F5qEW2j1DoOg4hYfDwLjdAZ5WyiTCL4s6ZBxW04fhUs5U8Bz89ryHleMgjdyJeMZzLXitqRSJ1x9JHYUHb1uXswYmN78i1fNj88336-_trd3X75df7ptnVaytHtpRkQDOI9aS3JEetqbzqDr1NgruX-YnDRmMtA5cCM5A2rSaEaQbkZF-qp5d6m75fTzSFzs6usEdf9I9SxWDgOA6lSvqlRepC4n5kyz3bJfMZ-sBPtkj73YY6s99skeO1RGXRiu2nigbB_TMce60X-gv4GjmGk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880024262</pqid></control><display><type>article</type><title>Evolution mechanism of mesoporous silicon nanopillars grown by metal-assisted chemical etching and nanosphere lithography: correlation of Raman spectra and red photoluminescence</title><source>Springer Link</source><creator>Karadan, Prajith ; John, Siju ; Anappara, Aji A. ; Narayana, Chandrabhas ; Barshilia, Harish C.</creator><creatorcontrib>Karadan, Prajith ; John, Siju ; Anappara, Aji A. ; Narayana, Chandrabhas ; Barshilia, Harish C.</creatorcontrib><description>We have fabricated highly ordered, vertically aligned, high aspect ratio silicon nanopillars (SiNPLs) of diameter ~80 nm by combining metal-assisted chemical etching and nanosphere lithography. The evolution of surface morphology of porous silicon nanopillars has been explained, and the presence of mesoporous structures was detected on the top of silicon nanopillars using field emission scanning electron microscopy. The mesoporosity of the SiNPLs is confirmed by Brunauer–Emmett–Teller measurements. The peak shift and the splitting of optical phonon modes into LO and TO modes in the micro-Raman spectra of mesoporous SiNPLs manifest the presence of 2–3 nm porous Si nanocrystallites ( P -SiNCs) on the top of SiNPLs and the size of crystallites was calculated using bond polarizability model for spherical phonon confinement. The origin of red luminescence is explained using quantum confinement (QC) and QC luminescent center models for the P -SiNCs, which is correlated with the micro-Raman spectra. Finally, we confirmed the origin of the red luminescence is from the P-SiNCs formed on surface of SiNPLs, highly desired for LED devices by suitably tailoring the substrate.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-0203-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Chemical etching ; Condensed Matter Physics ; Correlation ; Lithography ; Machines ; Manufacturing ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Origins ; Phonons ; Physics ; Physics and Astronomy ; Processes ; Silicon ; Spectra ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2016-07, Vol.122 (7), p.1-10, Article 669</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-5179aa70af9331ecee3d5747ac4296215bdc177d704c0c9ec702d3a7901cfa2e3</citedby><cites>FETCH-LOGICAL-c321t-5179aa70af9331ecee3d5747ac4296215bdc177d704c0c9ec702d3a7901cfa2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Karadan, Prajith</creatorcontrib><creatorcontrib>John, Siju</creatorcontrib><creatorcontrib>Anappara, Aji A.</creatorcontrib><creatorcontrib>Narayana, Chandrabhas</creatorcontrib><creatorcontrib>Barshilia, Harish C.</creatorcontrib><title>Evolution mechanism of mesoporous silicon nanopillars grown by metal-assisted chemical etching and nanosphere lithography: correlation of Raman spectra and red photoluminescence</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>We have fabricated highly ordered, vertically aligned, high aspect ratio silicon nanopillars (SiNPLs) of diameter ~80 nm by combining metal-assisted chemical etching and nanosphere lithography. The evolution of surface morphology of porous silicon nanopillars has been explained, and the presence of mesoporous structures was detected on the top of silicon nanopillars using field emission scanning electron microscopy. The mesoporosity of the SiNPLs is confirmed by Brunauer–Emmett–Teller measurements. The peak shift and the splitting of optical phonon modes into LO and TO modes in the micro-Raman spectra of mesoporous SiNPLs manifest the presence of 2–3 nm porous Si nanocrystallites ( P -SiNCs) on the top of SiNPLs and the size of crystallites was calculated using bond polarizability model for spherical phonon confinement. The origin of red luminescence is explained using quantum confinement (QC) and QC luminescent center models for the P -SiNCs, which is correlated with the micro-Raman spectra. Finally, we confirmed the origin of the red luminescence is from the P-SiNCs formed on surface of SiNPLs, highly desired for LED devices by suitably tailoring the substrate.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical etching</subject><subject>Condensed Matter Physics</subject><subject>Correlation</subject><subject>Lithography</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Origins</subject><subject>Phonons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Silicon</subject><subject>Spectra</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEEkvhB3DzkUtgbGfjhBuqyodUqVIFZ2vqTDauHDt4vKD9WfxD3F3O-DKy5n3m622atxLeSwDzgQG0HluQfQsKdDs8a3ay06qFXsPzZgdjZ9pBj_3L5hXzI9TXKbVr_tz8SuFYfIpiJbdg9LyKNNcPpy3ldGTBPnhX8xFj2nwImFkccvodxcOp6gqGFpk9F5qEW2j1DoOg4hYfDwLjdAZ5WyiTCL4s6ZBxW04fhUs5U8Bz89ryHleMgjdyJeMZzLXitqRSJ1x9JHYUHb1uXswYmN78i1fNj88336-_trd3X75df7ptnVaytHtpRkQDOI9aS3JEetqbzqDr1NgruX-YnDRmMtA5cCM5A2rSaEaQbkZF-qp5d6m75fTzSFzs6usEdf9I9SxWDgOA6lSvqlRepC4n5kyz3bJfMZ-sBPtkj73YY6s99skeO1RGXRiu2nigbB_TMce60X-gv4GjmGk</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Karadan, Prajith</creator><creator>John, Siju</creator><creator>Anappara, Aji A.</creator><creator>Narayana, Chandrabhas</creator><creator>Barshilia, Harish C.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Evolution mechanism of mesoporous silicon nanopillars grown by metal-assisted chemical etching and nanosphere lithography: correlation of Raman spectra and red photoluminescence</title><author>Karadan, Prajith ; John, Siju ; Anappara, Aji A. ; Narayana, Chandrabhas ; Barshilia, Harish C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-5179aa70af9331ecee3d5747ac4296215bdc177d704c0c9ec702d3a7901cfa2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical etching</topic><topic>Condensed Matter Physics</topic><topic>Correlation</topic><topic>Lithography</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Origins</topic><topic>Phonons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Silicon</topic><topic>Spectra</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karadan, Prajith</creatorcontrib><creatorcontrib>John, Siju</creatorcontrib><creatorcontrib>Anappara, Aji A.</creatorcontrib><creatorcontrib>Narayana, Chandrabhas</creatorcontrib><creatorcontrib>Barshilia, Harish C.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karadan, Prajith</au><au>John, Siju</au><au>Anappara, Aji A.</au><au>Narayana, Chandrabhas</au><au>Barshilia, Harish C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution mechanism of mesoporous silicon nanopillars grown by metal-assisted chemical etching and nanosphere lithography: correlation of Raman spectra and red photoluminescence</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>122</volume><issue>7</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>669</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>We have fabricated highly ordered, vertically aligned, high aspect ratio silicon nanopillars (SiNPLs) of diameter ~80 nm by combining metal-assisted chemical etching and nanosphere lithography. The evolution of surface morphology of porous silicon nanopillars has been explained, and the presence of mesoporous structures was detected on the top of silicon nanopillars using field emission scanning electron microscopy. The mesoporosity of the SiNPLs is confirmed by Brunauer–Emmett–Teller measurements. The peak shift and the splitting of optical phonon modes into LO and TO modes in the micro-Raman spectra of mesoporous SiNPLs manifest the presence of 2–3 nm porous Si nanocrystallites ( P -SiNCs) on the top of SiNPLs and the size of crystallites was calculated using bond polarizability model for spherical phonon confinement. The origin of red luminescence is explained using quantum confinement (QC) and QC luminescent center models for the P -SiNCs, which is correlated with the micro-Raman spectra. Finally, we confirmed the origin of the red luminescence is from the P-SiNCs formed on surface of SiNPLs, highly desired for LED devices by suitably tailoring the substrate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-0203-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2016-07, Vol.122 (7), p.1-10, Article 669
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1880024262
source Springer Link
subjects Characterization and Evaluation of Materials
Chemical etching
Condensed Matter Physics
Correlation
Lithography
Machines
Manufacturing
Nanostructure
Nanotechnology
Optical and Electronic Materials
Origins
Phonons
Physics
Physics and Astronomy
Processes
Silicon
Spectra
Surfaces and Interfaces
Thin Films
title Evolution mechanism of mesoporous silicon nanopillars grown by metal-assisted chemical etching and nanosphere lithography: correlation of Raman spectra and red photoluminescence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T02%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20mechanism%20of%20mesoporous%20silicon%20nanopillars%20grown%20by%20metal-assisted%20chemical%20etching%20and%20nanosphere%20lithography:%20correlation%20of%20Raman%20spectra%20and%20red%20photoluminescence&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Karadan,%20Prajith&rft.date=2016-07-01&rft.volume=122&rft.issue=7&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=669&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-0203-8&rft_dat=%3Cproquest_cross%3E1880024262%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-5179aa70af9331ecee3d5747ac4296215bdc177d704c0c9ec702d3a7901cfa2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880024262&rft_id=info:pmid/&rfr_iscdi=true