Loading…

Topologically inferring pathway activity for precise survival outcome prediction: breast cancer as a case

Accurately predicting the survival outcome of patients is of great importance in clinical cancer research. In the past decade, building survival prediction models based on gene expression data has received increasing interest. However, the existing methods are mainly based on individual gene signatu...

Full description

Saved in:
Bibliographic Details
Published in:Molecular bioSystems 2017-02, Vol.13 (3), p.537-548
Main Authors: Liu, Wei, Wang, Wei, Tian, Guohua, Xie, Wenming, Lei, Li, Liu, Jiujin, Huang, Wanxun, Xu, Liyan, Li, Enmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurately predicting the survival outcome of patients is of great importance in clinical cancer research. In the past decade, building survival prediction models based on gene expression data has received increasing interest. However, the existing methods are mainly based on individual gene signatures, which are known to have limited prediction accuracy on independent datasets and unclear biological relevance. Here, we propose a novel pathway-based survival prediction method called DRWPSurv in order to accurately predict survival outcome. DRWPSurv integrates gene expression profiles and prior gene interaction information to topologically infer survival associated pathway activities, and uses the pathway activities as features to construct Lasso-Cox model. It uses topological importance of genes evaluated by directed random walk to enhance the robustness of pathway activities and thereby improve the predictive performance. We applied DRWPSurv on three independent breast cancer datasets and compared the predictive performance with a traditional gene-based method and four pathway-based methods. Results showed that pathway-based methods obtained comparable or better predictive performance than the gene-based method, whereas DRWPSurv could predict survival outcome with better accuracy and robustness among the pathway-based methods. In addition, the risk pathways identified by DRWPSurv provide biologically informative models for breast cancer prognosis and treatment.
ISSN:1742-206X
1742-2051
DOI:10.1039/c6mb00757k