Loading…

Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity

The direct growth of III–V nanostructures on silicon has shown great promise in the integration of optoelectronics with silicon-based technologies. Our previous work showed that scaling up nanostructures to microsize while maintaining high quality heterogeneous integration opens a pathway toward a c...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2015-11, Vol.15 (11), p.7189-7198
Main Authors: Li, Kun, Ng, Kar Wei, Tran, Thai-Truong D, Sun, Hao, Lu, Fanglu, Chang-Hasnain, Connie J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a414t-27e5b12f41506fd4ce073a417e4ab311fd1898f91941885381a858193457f7a73
cites cdi_FETCH-LOGICAL-a414t-27e5b12f41506fd4ce073a417e4ab311fd1898f91941885381a858193457f7a73
container_end_page 7198
container_issue 11
container_start_page 7189
container_title Nano letters
container_volume 15
creator Li, Kun
Ng, Kar Wei
Tran, Thai-Truong D
Sun, Hao
Lu, Fanglu
Chang-Hasnain, Connie J
description The direct growth of III–V nanostructures on silicon has shown great promise in the integration of optoelectronics with silicon-based technologies. Our previous work showed that scaling up nanostructures to microsize while maintaining high quality heterogeneous integration opens a pathway toward a complete photonic integrated circuit and high-efficiency cost-effective solar cells. In this paper, we present a thorough material study of novel metastable InP micropillars monolithically grown on silicon, focusing on two enabling aspects of this technology–the stress relaxation mechanism at the heterogeneous interface and the microstructure surface quality. Aberration-corrected transmission electron microscopy studies show that InP grows directly on silicon without any amorphous layer in between. A set of periodic dislocations was found at the heterointerface, relaxing the 8% lattice mismatch between InP and Si. Single crystalline InP therefore can grow on top of the fully relaxed template, yielding high-quality micropillars with diameters expanding beyond 1 μm. An interesting power-dependence trend of carrier recombination lifetimes was captured for these InP micropillars at room temperature, for the first time for micro/nanostructures. By simply combining internal quantum efficiency with carrier lifetime, we revealed the recombination dynamics of nonradiative and radiative portions separately. A very low surface recombination velocity of 1.1 × 103 cm/sec was obtained. In addition, we experimentally estimated the radiative recombination B coefficient of 2.0 × 10–10 cm3/sec for pure wurtzite-phased InP. These values are comparable with those obtained from InP bulk. Exceeding the limits of conventional nanowires, our InP micropillars combine the strengths of both nanostructures and bulk materials and will provide an avenue in heterogeneous integration of III–V semiconductor materials onto silicon platforms.
doi_str_mv 10.1021/acs.nanolett.5b02869
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835576977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1832247070</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-27e5b12f41506fd4ce073a417e4ab311fd1898f91941885381a858193457f7a73</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMobk7_gUgvvelMmqRJLmXoHEwczg-8Kmmbsoy2mUnKmL_ejH1cilfnwHnecw4PANcIDhFM0J0s3LCVramV90Oaw4Sn4gT0EcUwToVITo89Jz1w4dwSQigwheegl6SEEIhJH3x9dtb_aK_i2UI6VUaTdhY968Kala5raV00tmbdRqaN5rrWRahr7RfR1KyjeWcrWajoVRWmyXUrvQ7jD1WbQvvNJTirZO3U1b4OwPvjw9voKZ6-jCej-2ksCSI-TpiiOUoqgihMq5IUCjIcRkwRmWOEqhJxwSuBBEGcU8yR5JQjgQllFZMMD8Dtbu_Kmu9OOZ812hUqPN8q07kMcUwpSwX7F5okhEEGA0p2aDDhnFVVtrK6kXaTIZht_WfBf3bwn-39h9jN_kKXN6o8hg7CAwB3wDa-NJ1tg5u_d_4CLE-UAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1832247070</pqid></control><display><type>article</type><title>Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Kun ; Ng, Kar Wei ; Tran, Thai-Truong D ; Sun, Hao ; Lu, Fanglu ; Chang-Hasnain, Connie J</creator><creatorcontrib>Li, Kun ; Ng, Kar Wei ; Tran, Thai-Truong D ; Sun, Hao ; Lu, Fanglu ; Chang-Hasnain, Connie J</creatorcontrib><description>The direct growth of III–V nanostructures on silicon has shown great promise in the integration of optoelectronics with silicon-based technologies. Our previous work showed that scaling up nanostructures to microsize while maintaining high quality heterogeneous integration opens a pathway toward a complete photonic integrated circuit and high-efficiency cost-effective solar cells. In this paper, we present a thorough material study of novel metastable InP micropillars monolithically grown on silicon, focusing on two enabling aspects of this technology–the stress relaxation mechanism at the heterogeneous interface and the microstructure surface quality. Aberration-corrected transmission electron microscopy studies show that InP grows directly on silicon without any amorphous layer in between. A set of periodic dislocations was found at the heterointerface, relaxing the 8% lattice mismatch between InP and Si. Single crystalline InP therefore can grow on top of the fully relaxed template, yielding high-quality micropillars with diameters expanding beyond 1 μm. An interesting power-dependence trend of carrier recombination lifetimes was captured for these InP micropillars at room temperature, for the first time for micro/nanostructures. By simply combining internal quantum efficiency with carrier lifetime, we revealed the recombination dynamics of nonradiative and radiative portions separately. A very low surface recombination velocity of 1.1 × 103 cm/sec was obtained. In addition, we experimentally estimated the radiative recombination B coefficient of 2.0 × 10–10 cm3/sec for pure wurtzite-phased InP. These values are comparable with those obtained from InP bulk. Exceeding the limits of conventional nanowires, our InP micropillars combine the strengths of both nanostructures and bulk materials and will provide an avenue in heterogeneous integration of III–V semiconductor materials onto silicon platforms.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b02869</identifier><identifier>PMID: 26444034</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Dislocations ; Indium phosphides ; Microscopy, Electron, Transmission ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology ; Nanowires ; Nanowires - chemistry ; Nanowires - ultrastructure ; Semiconductor materials ; Semiconductors ; Silicon ; Silicon - chemistry ; Silicon substrates ; Wurtzite</subject><ispartof>Nano letters, 2015-11, Vol.15 (11), p.7189-7198</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-27e5b12f41506fd4ce073a417e4ab311fd1898f91941885381a858193457f7a73</citedby><cites>FETCH-LOGICAL-a414t-27e5b12f41506fd4ce073a417e4ab311fd1898f91941885381a858193457f7a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26444034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Ng, Kar Wei</creatorcontrib><creatorcontrib>Tran, Thai-Truong D</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Lu, Fanglu</creatorcontrib><creatorcontrib>Chang-Hasnain, Connie J</creatorcontrib><title>Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The direct growth of III–V nanostructures on silicon has shown great promise in the integration of optoelectronics with silicon-based technologies. Our previous work showed that scaling up nanostructures to microsize while maintaining high quality heterogeneous integration opens a pathway toward a complete photonic integrated circuit and high-efficiency cost-effective solar cells. In this paper, we present a thorough material study of novel metastable InP micropillars monolithically grown on silicon, focusing on two enabling aspects of this technology–the stress relaxation mechanism at the heterogeneous interface and the microstructure surface quality. Aberration-corrected transmission electron microscopy studies show that InP grows directly on silicon without any amorphous layer in between. A set of periodic dislocations was found at the heterointerface, relaxing the 8% lattice mismatch between InP and Si. Single crystalline InP therefore can grow on top of the fully relaxed template, yielding high-quality micropillars with diameters expanding beyond 1 μm. An interesting power-dependence trend of carrier recombination lifetimes was captured for these InP micropillars at room temperature, for the first time for micro/nanostructures. By simply combining internal quantum efficiency with carrier lifetime, we revealed the recombination dynamics of nonradiative and radiative portions separately. A very low surface recombination velocity of 1.1 × 103 cm/sec was obtained. In addition, we experimentally estimated the radiative recombination B coefficient of 2.0 × 10–10 cm3/sec for pure wurtzite-phased InP. These values are comparable with those obtained from InP bulk. Exceeding the limits of conventional nanowires, our InP micropillars combine the strengths of both nanostructures and bulk materials and will provide an avenue in heterogeneous integration of III–V semiconductor materials onto silicon platforms.</description><subject>Dislocations</subject><subject>Indium phosphides</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Nanowires - chemistry</subject><subject>Nanowires - ultrastructure</subject><subject>Semiconductor materials</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Silicon substrates</subject><subject>Wurtzite</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkF1LwzAUhoMobk7_gUgvvelMmqRJLmXoHEwczg-8Kmmbsoy2mUnKmL_ejH1cilfnwHnecw4PANcIDhFM0J0s3LCVramV90Oaw4Sn4gT0EcUwToVITo89Jz1w4dwSQigwheegl6SEEIhJH3x9dtb_aK_i2UI6VUaTdhY968Kala5raV00tmbdRqaN5rrWRahr7RfR1KyjeWcrWajoVRWmyXUrvQ7jD1WbQvvNJTirZO3U1b4OwPvjw9voKZ6-jCej-2ksCSI-TpiiOUoqgihMq5IUCjIcRkwRmWOEqhJxwSuBBEGcU8yR5JQjgQllFZMMD8Dtbu_Kmu9OOZ812hUqPN8q07kMcUwpSwX7F5okhEEGA0p2aDDhnFVVtrK6kXaTIZht_WfBf3bwn-39h9jN_kKXN6o8hg7CAwB3wDa-NJ1tg5u_d_4CLE-UAA</recordid><startdate>20151111</startdate><enddate>20151111</enddate><creator>Li, Kun</creator><creator>Ng, Kar Wei</creator><creator>Tran, Thai-Truong D</creator><creator>Sun, Hao</creator><creator>Lu, Fanglu</creator><creator>Chang-Hasnain, Connie J</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151111</creationdate><title>Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity</title><author>Li, Kun ; Ng, Kar Wei ; Tran, Thai-Truong D ; Sun, Hao ; Lu, Fanglu ; Chang-Hasnain, Connie J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-27e5b12f41506fd4ce073a417e4ab311fd1898f91941885381a858193457f7a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Dislocations</topic><topic>Indium phosphides</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Nanowires - chemistry</topic><topic>Nanowires - ultrastructure</topic><topic>Semiconductor materials</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Silicon substrates</topic><topic>Wurtzite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Ng, Kar Wei</creatorcontrib><creatorcontrib>Tran, Thai-Truong D</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Lu, Fanglu</creatorcontrib><creatorcontrib>Chang-Hasnain, Connie J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Kun</au><au>Ng, Kar Wei</au><au>Tran, Thai-Truong D</au><au>Sun, Hao</au><au>Lu, Fanglu</au><au>Chang-Hasnain, Connie J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2015-11-11</date><risdate>2015</risdate><volume>15</volume><issue>11</issue><spage>7189</spage><epage>7198</epage><pages>7189-7198</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>The direct growth of III–V nanostructures on silicon has shown great promise in the integration of optoelectronics with silicon-based technologies. Our previous work showed that scaling up nanostructures to microsize while maintaining high quality heterogeneous integration opens a pathway toward a complete photonic integrated circuit and high-efficiency cost-effective solar cells. In this paper, we present a thorough material study of novel metastable InP micropillars monolithically grown on silicon, focusing on two enabling aspects of this technology–the stress relaxation mechanism at the heterogeneous interface and the microstructure surface quality. Aberration-corrected transmission electron microscopy studies show that InP grows directly on silicon without any amorphous layer in between. A set of periodic dislocations was found at the heterointerface, relaxing the 8% lattice mismatch between InP and Si. Single crystalline InP therefore can grow on top of the fully relaxed template, yielding high-quality micropillars with diameters expanding beyond 1 μm. An interesting power-dependence trend of carrier recombination lifetimes was captured for these InP micropillars at room temperature, for the first time for micro/nanostructures. By simply combining internal quantum efficiency with carrier lifetime, we revealed the recombination dynamics of nonradiative and radiative portions separately. A very low surface recombination velocity of 1.1 × 103 cm/sec was obtained. In addition, we experimentally estimated the radiative recombination B coefficient of 2.0 × 10–10 cm3/sec for pure wurtzite-phased InP. These values are comparable with those obtained from InP bulk. Exceeding the limits of conventional nanowires, our InP micropillars combine the strengths of both nanostructures and bulk materials and will provide an avenue in heterogeneous integration of III–V semiconductor materials onto silicon platforms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26444034</pmid><doi>10.1021/acs.nanolett.5b02869</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2015-11, Vol.15 (11), p.7189-7198
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1835576977
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Dislocations
Indium phosphides
Microscopy, Electron, Transmission
Nanostructure
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology
Nanowires
Nanowires - chemistry
Nanowires - ultrastructure
Semiconductor materials
Semiconductors
Silicon
Silicon - chemistry
Silicon substrates
Wurtzite
title Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T02%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wurtzite-Phased%20InP%20Micropillars%20Grown%20on%20Silicon%20with%20Low%20Surface%20Recombination%20Velocity&rft.jtitle=Nano%20letters&rft.au=Li,%20Kun&rft.date=2015-11-11&rft.volume=15&rft.issue=11&rft.spage=7189&rft.epage=7198&rft.pages=7189-7198&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b02869&rft_dat=%3Cproquest_cross%3E1832247070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-27e5b12f41506fd4ce073a417e4ab311fd1898f91941885381a858193457f7a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1832247070&rft_id=info:pmid/26444034&rfr_iscdi=true