Loading…

A method for solving an exterior three-dimensional boundary value problem for the Laplace equation

We develop and experimentally study the algorithms for solving three-dimensionalmixed boundary value problems for the Laplace equation in unbounded domains. These algorithms are based on the combined use of the finite elementmethod and an integral representation of the solution in a homogeneous spac...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied and industrial mathematics 2016-04, Vol.10 (2), p.277-287
Main Authors: Savchenko, A. O., Il’in, V. P., Butyugin, D. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2645-6d7a397313d41f49bd03bf83d9500c2d20e2ed7130141effcc49870f1c1127883
cites cdi_FETCH-LOGICAL-c2645-6d7a397313d41f49bd03bf83d9500c2d20e2ed7130141effcc49870f1c1127883
container_end_page 287
container_issue 2
container_start_page 277
container_title Journal of applied and industrial mathematics
container_volume 10
creator Savchenko, A. O.
Il’in, V. P.
Butyugin, D. S.
description We develop and experimentally study the algorithms for solving three-dimensionalmixed boundary value problems for the Laplace equation in unbounded domains. These algorithms are based on the combined use of the finite elementmethod and an integral representation of the solution in a homogeneous space. The proposed approach consists in the use of the Schwarz alternating method with consecutive solution of the interior and exterior boundary value problems in the intersecting subdomains on whose adjoining boundaries the iterated interface conditions are imposed. The convergence of the iterative method is proved. The convergence rate of the iterative process is studied analytically in the case when the subdomains are spherical layers with the known exact representations of all consecutive approximations. In this model case, the influence of the algorithm parameters on the method efficiency is analyzed. The approach under study is implemented for solving a problem with a sophisticated configuration of boundaries while using a high precision finite elementmethod to solve the interior boundary value problems. The convergence rate of the iterations and the achieved accuracy of the computations are illustrated with some numerical experiments.
doi_str_mv 10.1134/S1990478916020125
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816091837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816091837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2645-6d7a397313d41f49bd03bf83d9500c2d20e2ed7130141effcc49870f1c1127883</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouKx-AG8BL16qmaTbJMdl8R8seFDPJW2mbiVtdpN20W9v1hURxdMMw-895j1CzoBdAoj86hG0ZrlUGgrGGfDZAZnsTlkutTz83pU-JqcxthUTwAtRFHxCqjntcFh5SxsfaPRu2_Yv1PQU3wYMbboNq4CY2bbDPra-N45WfuytCe90a9yIdB185bD7NBhWSJdm7UyNFDejGZLihBw1xkU8_ZpT8nxz_bS4y5YPt_eL-TKreZHPssJKI7QUIGwOTa4ry0TVKGH1jLGaW86Qo5UgGOSATVPXuVaSNVADcKmUmJKLvW96aDNiHMqujTU6Z3r0YyxBpXo0KCETev4LffVjSNkSJTXjApTeGcKeqoOPMWBTrkPbpeAlsHJXfPmn-KThe01MbP-C4Yfzv6IPLdyD5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790231898</pqid></control><display><type>article</type><title>A method for solving an exterior three-dimensional boundary value problem for the Laplace equation</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Savchenko, A. O. ; Il’in, V. P. ; Butyugin, D. S.</creator><creatorcontrib>Savchenko, A. O. ; Il’in, V. P. ; Butyugin, D. S.</creatorcontrib><description>We develop and experimentally study the algorithms for solving three-dimensionalmixed boundary value problems for the Laplace equation in unbounded domains. These algorithms are based on the combined use of the finite elementmethod and an integral representation of the solution in a homogeneous space. The proposed approach consists in the use of the Schwarz alternating method with consecutive solution of the interior and exterior boundary value problems in the intersecting subdomains on whose adjoining boundaries the iterated interface conditions are imposed. The convergence of the iterative method is proved. The convergence rate of the iterative process is studied analytically in the case when the subdomains are spherical layers with the known exact representations of all consecutive approximations. In this model case, the influence of the algorithm parameters on the method efficiency is analyzed. The approach under study is implemented for solving a problem with a sophisticated configuration of boundaries while using a high precision finite elementmethod to solve the interior boundary value problems. The convergence rate of the iterations and the achieved accuracy of the computations are illustrated with some numerical experiments.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478916020125</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Boundaries ; Boundary conditions ; Boundary value problems ; Computational mathematics ; Convergence ; Integrals ; Iterative methods ; Laplace transforms ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Representations ; Studies</subject><ispartof>Journal of applied and industrial mathematics, 2016-04, Vol.10 (2), p.277-287</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2645-6d7a397313d41f49bd03bf83d9500c2d20e2ed7130141effcc49870f1c1127883</citedby><cites>FETCH-LOGICAL-c2645-6d7a397313d41f49bd03bf83d9500c2d20e2ed7130141effcc49870f1c1127883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1790231898?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,786,790,11715,27957,27958,36095,36096,44398</link.rule.ids></links><search><creatorcontrib>Savchenko, A. O.</creatorcontrib><creatorcontrib>Il’in, V. P.</creatorcontrib><creatorcontrib>Butyugin, D. S.</creatorcontrib><title>A method for solving an exterior three-dimensional boundary value problem for the Laplace equation</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>We develop and experimentally study the algorithms for solving three-dimensionalmixed boundary value problems for the Laplace equation in unbounded domains. These algorithms are based on the combined use of the finite elementmethod and an integral representation of the solution in a homogeneous space. The proposed approach consists in the use of the Schwarz alternating method with consecutive solution of the interior and exterior boundary value problems in the intersecting subdomains on whose adjoining boundaries the iterated interface conditions are imposed. The convergence of the iterative method is proved. The convergence rate of the iterative process is studied analytically in the case when the subdomains are spherical layers with the known exact representations of all consecutive approximations. In this model case, the influence of the algorithm parameters on the method efficiency is analyzed. The approach under study is implemented for solving a problem with a sophisticated configuration of boundaries while using a high precision finite elementmethod to solve the interior boundary value problems. The convergence rate of the iterations and the achieved accuracy of the computations are illustrated with some numerical experiments.</description><subject>Algorithms</subject><subject>Boundaries</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Computational mathematics</subject><subject>Convergence</subject><subject>Integrals</subject><subject>Iterative methods</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Representations</subject><subject>Studies</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE9LxDAQxYMouKx-AG8BL16qmaTbJMdl8R8seFDPJW2mbiVtdpN20W9v1hURxdMMw-895j1CzoBdAoj86hG0ZrlUGgrGGfDZAZnsTlkutTz83pU-JqcxthUTwAtRFHxCqjntcFh5SxsfaPRu2_Yv1PQU3wYMbboNq4CY2bbDPra-N45WfuytCe90a9yIdB185bD7NBhWSJdm7UyNFDejGZLihBw1xkU8_ZpT8nxz_bS4y5YPt_eL-TKreZHPssJKI7QUIGwOTa4ry0TVKGH1jLGaW86Qo5UgGOSATVPXuVaSNVADcKmUmJKLvW96aDNiHMqujTU6Z3r0YyxBpXo0KCETev4LffVjSNkSJTXjApTeGcKeqoOPMWBTrkPbpeAlsHJXfPmn-KThe01MbP-C4Yfzv6IPLdyD5A</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Savchenko, A. O.</creator><creator>Il’in, V. P.</creator><creator>Butyugin, D. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20160401</creationdate><title>A method for solving an exterior three-dimensional boundary value problem for the Laplace equation</title><author>Savchenko, A. O. ; Il’in, V. P. ; Butyugin, D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2645-6d7a397313d41f49bd03bf83d9500c2d20e2ed7130141effcc49870f1c1127883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Boundaries</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Computational mathematics</topic><topic>Convergence</topic><topic>Integrals</topic><topic>Iterative methods</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Representations</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savchenko, A. O.</creatorcontrib><creatorcontrib>Il’in, V. P.</creatorcontrib><creatorcontrib>Butyugin, D. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savchenko, A. O.</au><au>Il’in, V. P.</au><au>Butyugin, D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for solving an exterior three-dimensional boundary value problem for the Laplace equation</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>10</volume><issue>2</issue><spage>277</spage><epage>287</epage><pages>277-287</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>We develop and experimentally study the algorithms for solving three-dimensionalmixed boundary value problems for the Laplace equation in unbounded domains. These algorithms are based on the combined use of the finite elementmethod and an integral representation of the solution in a homogeneous space. The proposed approach consists in the use of the Schwarz alternating method with consecutive solution of the interior and exterior boundary value problems in the intersecting subdomains on whose adjoining boundaries the iterated interface conditions are imposed. The convergence of the iterative method is proved. The convergence rate of the iterative process is studied analytically in the case when the subdomains are spherical layers with the known exact representations of all consecutive approximations. In this model case, the influence of the algorithm parameters on the method efficiency is analyzed. The approach under study is implemented for solving a problem with a sophisticated configuration of boundaries while using a high precision finite elementmethod to solve the interior boundary value problems. The convergence rate of the iterations and the achieved accuracy of the computations are illustrated with some numerical experiments.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478916020125</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1990-4789
ispartof Journal of applied and industrial mathematics, 2016-04, Vol.10 (2), p.277-287
issn 1990-4789
1990-4797
language eng
recordid cdi_proquest_miscellaneous_1816091837
source ABI/INFORM Global; Springer Link
subjects Algorithms
Boundaries
Boundary conditions
Boundary value problems
Computational mathematics
Convergence
Integrals
Iterative methods
Laplace transforms
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Representations
Studies
title A method for solving an exterior three-dimensional boundary value problem for the Laplace equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T19%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20solving%20an%20exterior%20three-dimensional%20boundary%20value%20problem%20for%20the%20Laplace%20equation&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Savchenko,%20A.%20O.&rft.date=2016-04-01&rft.volume=10&rft.issue=2&rft.spage=277&rft.epage=287&rft.pages=277-287&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478916020125&rft_dat=%3Cproquest_cross%3E1816091837%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2645-6d7a397313d41f49bd03bf83d9500c2d20e2ed7130141effcc49870f1c1127883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1790231898&rft_id=info:pmid/&rfr_iscdi=true