Loading…

Toxicity of 3,5,6-trichloro-2-pyridinol tested at multiple stages of zebrafish (Danio rerio) development

Organophosphate compounds (OP) are widely used throughout the world for pest control. 3,5,6-Trichloro-2-pyridinol (TCP) is a primary metabolite of two OP compounds namely CP and triclopyr. This study is carried out to know whether a metabolite of parent compound is doing well or harm to biota. The p...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2016-08, Vol.23 (15), p.15515-15523
Main Authors: Suvarchala, Gonuguntla, Philip, Gundala Harold
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Organophosphate compounds (OP) are widely used throughout the world for pest control. 3,5,6-Trichloro-2-pyridinol (TCP) is a primary metabolite of two OP compounds namely CP and triclopyr. This study is carried out to know whether a metabolite of parent compound is doing well or harm to biota. The potential effect of TCP was evaluated on development as destabilization of any events transpiring during embryogenesis could be deleterious. To determine this, 4-hpf zebrafish embryos were exposed to five concentrations of TCP (200, 400, 600, 800, 1000 μg/L) or 99.5 % acetone (solvent control). Different early life-stage parameters were observed at four different developmental stages, 24, 48, 72 and 96 hpf. TCP-treated embryo/larvae showed increased mortality, delay in hatching time and decrease in percentage of hatched embryos. Reduction in heartbeat rate, blood flow and body and eye pigmentation was noticed in a dose-dependent manner. Pericardial and yolk sac edema were most severe malformations caused by TCP. Along with this crooked spine/notochord, tail deformation was noticed in hatched and unhatched embryos. The malformations observed provide a good starting point for examination of the molecular mechanisms that are affected during development by TCP. Results gain significance as TCP, which is a breakdown product, appears to be more toxic during development compared to parent compound, CP (our earlier publication).
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-016-6684-3