Loading…

Planckian axions in string theory

A bstract We argue that super-Planckian diameters of axion fundamental domains can arise in Calabi-Yau compactifications of string theory. In a theory with N axions θ i , the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form −  π   N constraints...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2015-12, Vol.2015 (12), p.1-36
Main Authors: Bachlechner, Thomas C., Long, Cody, McAllister, Liam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-3d58581e84cbc088d7d68c6ab4237d657e76c7516de2fa4027a380027bcdaa663
cites cdi_FETCH-LOGICAL-c384t-3d58581e84cbc088d7d68c6ab4237d657e76c7516de2fa4027a380027bcdaa663
container_end_page 36
container_issue 12
container_start_page 1
container_title The journal of high energy physics
container_volume 2015
creator Bachlechner, Thomas C.
Long, Cody
McAllister, Liam
description A bstract We argue that super-Planckian diameters of axion fundamental domains can arise in Calabi-Yau compactifications of string theory. In a theory with N axions θ i , the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form −  π   N constraints, while for P = N the diameter is further enhanced by eigenvector delocalization to N 3/2 f N . We directly verify our results in explicit Calabi-Yau compactifications of type IIB string theory. In the classic example with h 1,1 = 51 where parametrically controlled moduli stabilization was demonstrated by Denef et al. in [ 1 ], the largest metric eigenvalue obeys f N ≈ 0.013 M pl . The random matrix analysis then predicts, and we exhibit, axion diameters ≈ M pl for the precise vacuum parameters found in [ 1 ]. Our results provide a framework for pursuing large-field axion inflation in well-understood flux vacua.
doi_str_mv 10.1007/JHEP12(2015)042
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808117792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808117792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-3d58581e84cbc088d7d68c6ab4237d657e76c7516de2fa4027a380027bcdaa663</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqUwswaxlCH0znFiZ0RVoaBKdIDZchwHUtIk2InU_nschaFCYro3fO_p9BFyjXCPAHz-slpukM4oYHwHjJ6QCQJNQ8F4enqUz8mFc1vwFKYwITebStX6q1R1oPZlU7ugrAPX2bL-CLpP09jDJTkrVOXM1e-dkvfH5dtiFa5fn54XD-tQR4J1YZTHIhZoBNOZBiFynidCJypjNPIx5oYnmseY5IYWigHlKhLgT6ZzpZIkmpLZuNva5rs3rpO70mlT-f9M0zuJAgQi5yn16O0fdNv0tvbfSeQsjVPqdz01HyltG-esKWRry52yB4kgB2VyVCYHZdIr8w0YG64dBBh7tPtP5Qc44WsR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749592027</pqid></control><display><type>article</type><title>Planckian axions in string theory</title><source>Springer Open Access</source><source>Publicly Available Content Database</source><creator>Bachlechner, Thomas C. ; Long, Cody ; McAllister, Liam</creator><creatorcontrib>Bachlechner, Thomas C. ; Long, Cody ; McAllister, Liam</creatorcontrib><description>A bstract We argue that super-Planckian diameters of axion fundamental domains can arise in Calabi-Yau compactifications of string theory. In a theory with N axions θ i , the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form −  π  &lt;  Q i j θ j  &lt;  π . We compute the diameter of the fundamental domain in terms of the eigenvalues f 1 2  ≤ … ≤  f N 2 of the metric on field space, and also, crucially, the largest eigenvalue of ( QQ ⊤ ) −1 . At large N , QQ ⊤ approaches a Wishart matrix, due to universality, and we show that the diameter is at least Nf N , exceeding the naive Pythagorean range by a factor &gt; N . This result is robust in the presence of P &gt; N constraints, while for P = N the diameter is further enhanced by eigenvector delocalization to N 3/2 f N . We directly verify our results in explicit Calabi-Yau compactifications of type IIB string theory. In the classic example with h 1,1 = 51 where parametrically controlled moduli stabilization was demonstrated by Denef et al. in [ 1 ], the largest metric eigenvalue obeys f N ≈ 0.013 M pl . The random matrix analysis then predicts, and we exhibit, axion diameters ≈ M pl for the precise vacuum parameters found in [ 1 ]. Our results provide a framework for pursuing large-field axion inflation in well-understood flux vacua.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP12(2015)042</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Eigenvalues ; Eigenvectors ; Elementary Particles ; Flux ; High energy physics ; Inflation ; Physics ; Physics and Astronomy ; Polytopes ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Stabilization ; String Theory ; Texts</subject><ispartof>The journal of high energy physics, 2015-12, Vol.2015 (12), p.1-36</ispartof><rights>The Author(s) 2015</rights><rights>SISSA, Trieste, Italy 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-3d58581e84cbc088d7d68c6ab4237d657e76c7516de2fa4027a380027bcdaa663</citedby><cites>FETCH-LOGICAL-c384t-3d58581e84cbc088d7d68c6ab4237d657e76c7516de2fa4027a380027bcdaa663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1749592027/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1749592027?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>315,786,790,25783,27957,27958,37047,37048,44625,75483</link.rule.ids></links><search><creatorcontrib>Bachlechner, Thomas C.</creatorcontrib><creatorcontrib>Long, Cody</creatorcontrib><creatorcontrib>McAllister, Liam</creatorcontrib><title>Planckian axions in string theory</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We argue that super-Planckian diameters of axion fundamental domains can arise in Calabi-Yau compactifications of string theory. In a theory with N axions θ i , the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form −  π  &lt;  Q i j θ j  &lt;  π . We compute the diameter of the fundamental domain in terms of the eigenvalues f 1 2  ≤ … ≤  f N 2 of the metric on field space, and also, crucially, the largest eigenvalue of ( QQ ⊤ ) −1 . At large N , QQ ⊤ approaches a Wishart matrix, due to universality, and we show that the diameter is at least Nf N , exceeding the naive Pythagorean range by a factor &gt; N . This result is robust in the presence of P &gt; N constraints, while for P = N the diameter is further enhanced by eigenvector delocalization to N 3/2 f N . We directly verify our results in explicit Calabi-Yau compactifications of type IIB string theory. In the classic example with h 1,1 = 51 where parametrically controlled moduli stabilization was demonstrated by Denef et al. in [ 1 ], the largest metric eigenvalue obeys f N ≈ 0.013 M pl . The random matrix analysis then predicts, and we exhibit, axion diameters ≈ M pl for the precise vacuum parameters found in [ 1 ]. Our results provide a framework for pursuing large-field axion inflation in well-understood flux vacua.</description><subject>Classical and Quantum Gravitation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Elementary Particles</subject><subject>Flux</subject><subject>High energy physics</subject><subject>Inflation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polytopes</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Stabilization</subject><subject>String Theory</subject><subject>Texts</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kDFPwzAQhS0EEqUwswaxlCH0znFiZ0RVoaBKdIDZchwHUtIk2InU_nschaFCYro3fO_p9BFyjXCPAHz-slpukM4oYHwHjJ6QCQJNQ8F4enqUz8mFc1vwFKYwITebStX6q1R1oPZlU7ugrAPX2bL-CLpP09jDJTkrVOXM1e-dkvfH5dtiFa5fn54XD-tQR4J1YZTHIhZoBNOZBiFynidCJypjNPIx5oYnmseY5IYWigHlKhLgT6ZzpZIkmpLZuNva5rs3rpO70mlT-f9M0zuJAgQi5yn16O0fdNv0tvbfSeQsjVPqdz01HyltG-esKWRry52yB4kgB2VyVCYHZdIr8w0YG64dBBh7tPtP5Qc44WsR</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Bachlechner, Thomas C.</creator><creator>Long, Cody</creator><creator>McAllister, Liam</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151201</creationdate><title>Planckian axions in string theory</title><author>Bachlechner, Thomas C. ; Long, Cody ; McAllister, Liam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-3d58581e84cbc088d7d68c6ab4237d657e76c7516de2fa4027a380027bcdaa663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Elementary Particles</topic><topic>Flux</topic><topic>High energy physics</topic><topic>Inflation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polytopes</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Stabilization</topic><topic>String Theory</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachlechner, Thomas C.</creatorcontrib><creatorcontrib>Long, Cody</creatorcontrib><creatorcontrib>McAllister, Liam</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachlechner, Thomas C.</au><au>Long, Cody</au><au>McAllister, Liam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planckian axions in string theory</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>2015</volume><issue>12</issue><spage>1</spage><epage>36</epage><pages>1-36</pages><issn>1029-8479</issn><eissn>1029-8479</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>A bstract We argue that super-Planckian diameters of axion fundamental domains can arise in Calabi-Yau compactifications of string theory. In a theory with N axions θ i , the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form −  π  &lt;  Q i j θ j  &lt;  π . We compute the diameter of the fundamental domain in terms of the eigenvalues f 1 2  ≤ … ≤  f N 2 of the metric on field space, and also, crucially, the largest eigenvalue of ( QQ ⊤ ) −1 . At large N , QQ ⊤ approaches a Wishart matrix, due to universality, and we show that the diameter is at least Nf N , exceeding the naive Pythagorean range by a factor &gt; N . This result is robust in the presence of P &gt; N constraints, while for P = N the diameter is further enhanced by eigenvector delocalization to N 3/2 f N . We directly verify our results in explicit Calabi-Yau compactifications of type IIB string theory. In the classic example with h 1,1 = 51 where parametrically controlled moduli stabilization was demonstrated by Denef et al. in [ 1 ], the largest metric eigenvalue obeys f N ≈ 0.013 M pl . The random matrix analysis then predicts, and we exhibit, axion diameters ≈ M pl for the precise vacuum parameters found in [ 1 ]. Our results provide a framework for pursuing large-field axion inflation in well-understood flux vacua.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP12(2015)042</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2015-12, Vol.2015 (12), p.1-36
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1808117792
source Springer Open Access; Publicly Available Content Database
subjects Classical and Quantum Gravitation
Eigenvalues
Eigenvectors
Elementary Particles
Flux
High energy physics
Inflation
Physics
Physics and Astronomy
Polytopes
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Stabilization
String Theory
Texts
title Planckian axions in string theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T22%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planckian%20axions%20in%20string%20theory&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Bachlechner,%20Thomas%20C.&rft.date=2015-12-01&rft.volume=2015&rft.issue=12&rft.spage=1&rft.epage=36&rft.pages=1-36&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP12(2015)042&rft_dat=%3Cproquest_cross%3E1808117792%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-3d58581e84cbc088d7d68c6ab4237d657e76c7516de2fa4027a380027bcdaa663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1749592027&rft_id=info:pmid/&rfr_iscdi=true