Loading…

The Complete Mechanism of an Aldol Condensation

Although aldol condensation is one of the most important organic reactions, capable of forming new C–C bonds, its mechanism has never been fully established. We now conclude that the rate-limiting step in the base-catalyzed aldol condensation of benzaldehydes with acetophenones, to produce chalcones...

Full description

Saved in:
Bibliographic Details
Published in:Journal of organic chemistry 2016-07, Vol.81 (13), p.5631-5635
Main Authors: Perrin, Charles L, Chang, Kuei-Lin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a374t-7971f8aaa9fc52972c0106c9085caffa00ff36b5791569893b825ff1e71be5ef3
cites cdi_FETCH-LOGICAL-a374t-7971f8aaa9fc52972c0106c9085caffa00ff36b5791569893b825ff1e71be5ef3
container_end_page 5635
container_issue 13
container_start_page 5631
container_title Journal of organic chemistry
container_volume 81
creator Perrin, Charles L
Chang, Kuei-Lin
description Although aldol condensation is one of the most important organic reactions, capable of forming new C–C bonds, its mechanism has never been fully established. We now conclude that the rate-limiting step in the base-catalyzed aldol condensation of benzaldehydes with acetophenones, to produce chalcones, is the final loss of hydroxide and formation of the CC bond. This conclusion is based on a study of the partitioning ratios of the intermediate ketols and on the solvent kinetic isotope effects, whereby the condensations are faster in D2O than in H2O, regardless of substitution.
doi_str_mv 10.1021/acs.joc.6b00959
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1801435251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1801435251</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-7971f8aaa9fc52972c0106c9085caffa00ff36b5791569893b825ff1e71be5ef3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUws6GMSCjtnV3H9lhVfElFLGW2HNdWUyVxiZOBf49RChu33HDP-0r3EHKLMEeguDA2zg_BzosSQHF1RqbIKeSFguU5mQJQmjNasAm5ivEAaTjnl2RCBZVIlZySxXbvsnVojrXrXfbm7N60VWyy4DPTZqt6F-p0bneujaavQntNLrypo7s57Rn5eHrcrl_yzfvz63q1yQ0Tyz4XSqCXxhjlLadKUAsIhVUguTXeGwDvWVFyoZAXSipWSsq9RyewdNx5NiP3Y--xC5-Di71uqmhdXZvWhSFqlIBLxinHhC5G1HYhxs55feyqxnRfGkH_WNLJkk6W9MlSStydyoeycbs__ldLAh5GYEwOXZt-_bfuG_J5cMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801435251</pqid></control><display><type>article</type><title>The Complete Mechanism of an Aldol Condensation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Perrin, Charles L ; Chang, Kuei-Lin</creator><creatorcontrib>Perrin, Charles L ; Chang, Kuei-Lin</creatorcontrib><description>Although aldol condensation is one of the most important organic reactions, capable of forming new C–C bonds, its mechanism has never been fully established. We now conclude that the rate-limiting step in the base-catalyzed aldol condensation of benzaldehydes with acetophenones, to produce chalcones, is the final loss of hydroxide and formation of the CC bond. This conclusion is based on a study of the partitioning ratios of the intermediate ketols and on the solvent kinetic isotope effects, whereby the condensations are faster in D2O than in H2O, regardless of substitution.</description><identifier>ISSN: 0022-3263</identifier><identifier>EISSN: 1520-6904</identifier><identifier>DOI: 10.1021/acs.joc.6b00959</identifier><identifier>PMID: 27281298</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of organic chemistry, 2016-07, Vol.81 (13), p.5631-5635</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-7971f8aaa9fc52972c0106c9085caffa00ff36b5791569893b825ff1e71be5ef3</citedby><cites>FETCH-LOGICAL-a374t-7971f8aaa9fc52972c0106c9085caffa00ff36b5791569893b825ff1e71be5ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27281298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perrin, Charles L</creatorcontrib><creatorcontrib>Chang, Kuei-Lin</creatorcontrib><title>The Complete Mechanism of an Aldol Condensation</title><title>Journal of organic chemistry</title><addtitle>J. Org. Chem</addtitle><description>Although aldol condensation is one of the most important organic reactions, capable of forming new C–C bonds, its mechanism has never been fully established. We now conclude that the rate-limiting step in the base-catalyzed aldol condensation of benzaldehydes with acetophenones, to produce chalcones, is the final loss of hydroxide and formation of the CC bond. This conclusion is based on a study of the partitioning ratios of the intermediate ketols and on the solvent kinetic isotope effects, whereby the condensations are faster in D2O than in H2O, regardless of substitution.</description><issn>0022-3263</issn><issn>1520-6904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqUws6GMSCjtnV3H9lhVfElFLGW2HNdWUyVxiZOBf49RChu33HDP-0r3EHKLMEeguDA2zg_BzosSQHF1RqbIKeSFguU5mQJQmjNasAm5ivEAaTjnl2RCBZVIlZySxXbvsnVojrXrXfbm7N60VWyy4DPTZqt6F-p0bneujaavQntNLrypo7s57Rn5eHrcrl_yzfvz63q1yQ0Tyz4XSqCXxhjlLadKUAsIhVUguTXeGwDvWVFyoZAXSipWSsq9RyewdNx5NiP3Y--xC5-Di71uqmhdXZvWhSFqlIBLxinHhC5G1HYhxs55feyqxnRfGkH_WNLJkk6W9MlSStydyoeycbs__ldLAh5GYEwOXZt-_bfuG_J5cMM</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Perrin, Charles L</creator><creator>Chang, Kuei-Lin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160701</creationdate><title>The Complete Mechanism of an Aldol Condensation</title><author>Perrin, Charles L ; Chang, Kuei-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-7971f8aaa9fc52972c0106c9085caffa00ff36b5791569893b825ff1e71be5ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perrin, Charles L</creatorcontrib><creatorcontrib>Chang, Kuei-Lin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perrin, Charles L</au><au>Chang, Kuei-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Complete Mechanism of an Aldol Condensation</atitle><jtitle>Journal of organic chemistry</jtitle><addtitle>J. Org. Chem</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>81</volume><issue>13</issue><spage>5631</spage><epage>5635</epage><pages>5631-5635</pages><issn>0022-3263</issn><eissn>1520-6904</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Although aldol condensation is one of the most important organic reactions, capable of forming new C–C bonds, its mechanism has never been fully established. We now conclude that the rate-limiting step in the base-catalyzed aldol condensation of benzaldehydes with acetophenones, to produce chalcones, is the final loss of hydroxide and formation of the CC bond. This conclusion is based on a study of the partitioning ratios of the intermediate ketols and on the solvent kinetic isotope effects, whereby the condensations are faster in D2O than in H2O, regardless of substitution.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27281298</pmid><doi>10.1021/acs.joc.6b00959</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3263
ispartof Journal of organic chemistry, 2016-07, Vol.81 (13), p.5631-5635
issn 0022-3263
1520-6904
language eng
recordid cdi_proquest_miscellaneous_1801435251
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title The Complete Mechanism of an Aldol Condensation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T09%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Complete%20Mechanism%20of%20an%20Aldol%20Condensation&rft.jtitle=Journal%20of%20organic%20chemistry&rft.au=Perrin,%20Charles%20L&rft.date=2016-07-01&rft.volume=81&rft.issue=13&rft.spage=5631&rft.epage=5635&rft.pages=5631-5635&rft.issn=0022-3263&rft.eissn=1520-6904&rft_id=info:doi/10.1021/acs.joc.6b00959&rft_dat=%3Cproquest_cross%3E1801435251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a374t-7971f8aaa9fc52972c0106c9085caffa00ff36b5791569893b825ff1e71be5ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1801435251&rft_id=info:pmid/27281298&rfr_iscdi=true