Loading…

Platelet sequestration and activation during GalTKO.hCD46 pig lung perfusion by human blood is primarily mediated by GPIb, GPIIb/IIIa, and von Willebrand Factor

Background Here, we ask whether platelet GPIb and GPIIb/IIIa receptors modulate platelet sequestration and activation during GalTKO.hCD46 pig lung xenograft perfusion. Methods GalTKO.hCD46 transgenic pig lungs were perfused with heparinized fresh human blood. Results from perfusions in which αGPIb F...

Full description

Saved in:
Bibliographic Details
Published in:Xenotransplantation (Københaven) 2016-05, Vol.23 (3), p.222-236
Main Authors: Burdorf, Lars, Riner, Andrea, Rybak, Elana, Salles, Isabelle I., De Meyer, Simon F., Shah, Aakash, Quinn, Kevin J., Harris, Donald, Zhang, Tianshu, Parsell, Dawn, Ali, Franchesca, Schwartz, Evan, Kang, Elizabeth, Cheng, Xiangfei, Sievert, Evelyn, Zhao, Yuming, Braileanu, Gheorghe, Phelps, Carol J., Ayares, David L., Deckmyn, Hans, Pierson III, Richard N., Azimzadeh, Agnes M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4686-22fd44c3264516a4ccca59ceb3ce72250b89f047b8186f1eb6e5e6eda524ecbd3
cites cdi_FETCH-LOGICAL-c4686-22fd44c3264516a4ccca59ceb3ce72250b89f047b8186f1eb6e5e6eda524ecbd3
container_end_page 236
container_issue 3
container_start_page 222
container_title Xenotransplantation (Københaven)
container_volume 23
creator Burdorf, Lars
Riner, Andrea
Rybak, Elana
Salles, Isabelle I.
De Meyer, Simon F.
Shah, Aakash
Quinn, Kevin J.
Harris, Donald
Zhang, Tianshu
Parsell, Dawn
Ali, Franchesca
Schwartz, Evan
Kang, Elizabeth
Cheng, Xiangfei
Sievert, Evelyn
Zhao, Yuming
Braileanu, Gheorghe
Phelps, Carol J.
Ayares, David L.
Deckmyn, Hans
Pierson III, Richard N.
Azimzadeh, Agnes M.
description Background Here, we ask whether platelet GPIb and GPIIb/IIIa receptors modulate platelet sequestration and activation during GalTKO.hCD46 pig lung xenograft perfusion. Methods GalTKO.hCD46 transgenic pig lungs were perfused with heparinized fresh human blood. Results from perfusions in which αGPIb Fab (6B4, 10 mg/l blood, n = 6), αGPIIb/IIIa Fab (ReoPro, 3.5 mg/l blood, n = 6), or both drugs (n = 4) were administered to the perfusate were compared to two additional groups in which the donor pig received 1‐desamino‐8‐d‐arginine vasopressin (DDAVP), 3 μg/kg (to pre‐deplete von Willebrand Factor (pVWF), the main GPIb ligand), with or without αGPIb (n = 6 each). Results Platelet sequestration was significantly delayed in αGPIb, αGPIb+DDAVP, and αGPIb+αGPIIb/IIIa groups. Median lung “survival” was significantly longer (>240 vs. 162 min reference, p = 0.016), and platelet activation (as CD62P and βTG) were significantly inhibited, when pigs were pre‐treated with DDAVP, with or without αGPIb Fab treatment. Pulmonary vascular resistance rise was not significantly attenuated in any group, and was associated with residual thromboxane and histamine elaboration. Conclusions The GPIb‐VWF and GPIIb/IIIa axes play important roles in platelet sequestration and coagulation cascade activation during GalTKO.hCD46 lung xenograft injury. GPIb blockade significantly reduces platelet activation and delays platelet sequestration in this xenolung rejection model, an effect amplified by adding αGPIIb/IIIa blockade or depletion of VWF from pig lung.
doi_str_mv 10.1111/xen.12236
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1795874697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1795874697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4686-22fd44c3264516a4ccca59ceb3ce72250b89f047b8186f1eb6e5e6eda524ecbd3</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhSMEokNhwQsgL0FqZvwTO86STtsQUU2LKGp3luPctAbPZLCT0nkbHhVn0naHF7av9d1z5HuS5D3BcxLX4gE2c0IpEy-SGWFFkTIsi5fJDBdYpkLwm4PkTQg_McaMS_46OaA5kZIzOkv-Xjrdg4MeBfg9QOi97m23QXrTIG16ez-VzeDt5haV2l19vZjfLU8ygbb2Frkhvm7Bt0MYsXqH7oa1jhfXdQ2yAW29XWtv3Q6tobHRqhmh8rKqj8a9qhdVVemjvd99VLi2zkHtx_Is-nf-bfKq1S7Au8fzMPlxdnq1_JKeX5TV8vN5ajIhRUpp22SZYVRknAidGWM0LwzUzEBOKce1LFqc5bUkUrQEagEcBDSa0wxM3bDD5OOku_XdfhBqbYMB5_QGuiEokhdc5pko8oh-mlDjuxA8tGr65U4RrMZAVAxE7QOJ7IdH2aGOE3gmnxKIwGIC_lgHu_8rqZvT1ZNkOnXY0MPDc4f2v5TIWc7V9apUJ6vvxTe2OlYl-wcQzqWC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795874697</pqid></control><display><type>article</type><title>Platelet sequestration and activation during GalTKO.hCD46 pig lung perfusion by human blood is primarily mediated by GPIb, GPIIb/IIIa, and von Willebrand Factor</title><source>Wiley Online Library</source><creator>Burdorf, Lars ; Riner, Andrea ; Rybak, Elana ; Salles, Isabelle I. ; De Meyer, Simon F. ; Shah, Aakash ; Quinn, Kevin J. ; Harris, Donald ; Zhang, Tianshu ; Parsell, Dawn ; Ali, Franchesca ; Schwartz, Evan ; Kang, Elizabeth ; Cheng, Xiangfei ; Sievert, Evelyn ; Zhao, Yuming ; Braileanu, Gheorghe ; Phelps, Carol J. ; Ayares, David L. ; Deckmyn, Hans ; Pierson III, Richard N. ; Azimzadeh, Agnes M.</creator><creatorcontrib>Burdorf, Lars ; Riner, Andrea ; Rybak, Elana ; Salles, Isabelle I. ; De Meyer, Simon F. ; Shah, Aakash ; Quinn, Kevin J. ; Harris, Donald ; Zhang, Tianshu ; Parsell, Dawn ; Ali, Franchesca ; Schwartz, Evan ; Kang, Elizabeth ; Cheng, Xiangfei ; Sievert, Evelyn ; Zhao, Yuming ; Braileanu, Gheorghe ; Phelps, Carol J. ; Ayares, David L. ; Deckmyn, Hans ; Pierson III, Richard N. ; Azimzadeh, Agnes M.</creatorcontrib><description>Background Here, we ask whether platelet GPIb and GPIIb/IIIa receptors modulate platelet sequestration and activation during GalTKO.hCD46 pig lung xenograft perfusion. Methods GalTKO.hCD46 transgenic pig lungs were perfused with heparinized fresh human blood. Results from perfusions in which αGPIb Fab (6B4, 10 mg/l blood, n = 6), αGPIIb/IIIa Fab (ReoPro, 3.5 mg/l blood, n = 6), or both drugs (n = 4) were administered to the perfusate were compared to two additional groups in which the donor pig received 1‐desamino‐8‐d‐arginine vasopressin (DDAVP), 3 μg/kg (to pre‐deplete von Willebrand Factor (pVWF), the main GPIb ligand), with or without αGPIb (n = 6 each). Results Platelet sequestration was significantly delayed in αGPIb, αGPIb+DDAVP, and αGPIb+αGPIIb/IIIa groups. Median lung “survival” was significantly longer (&gt;240 vs. 162 min reference, p = 0.016), and platelet activation (as CD62P and βTG) were significantly inhibited, when pigs were pre‐treated with DDAVP, with or without αGPIb Fab treatment. Pulmonary vascular resistance rise was not significantly attenuated in any group, and was associated with residual thromboxane and histamine elaboration. Conclusions The GPIb‐VWF and GPIIb/IIIa axes play important roles in platelet sequestration and coagulation cascade activation during GalTKO.hCD46 lung xenograft injury. GPIb blockade significantly reduces platelet activation and delays platelet sequestration in this xenolung rejection model, an effect amplified by adding αGPIIb/IIIa blockade or depletion of VWF from pig lung.</description><identifier>ISSN: 0908-665X</identifier><identifier>EISSN: 1399-3089</identifier><identifier>DOI: 10.1111/xen.12236</identifier><identifier>PMID: 27188532</identifier><language>eng</language><publisher>Denmark: Blackwell Publishing Ltd</publisher><subject>Animals ; Animals, Genetically Modified ; Blood Platelets - cytology ; coagulation ; ex-vivo perfusion ; Fab ; GalTKO.hCD46 ; Glycoprotein ; GPIb ; GPIIb/IIIa ; Graft Survival - immunology ; Heterografts - immunology ; Humans ; lung ; Lung - immunology ; Lung - metabolism ; Lung Transplantation - methods ; platelet activation ; Platelet Activation - physiology ; Platelet Aggregation - genetics ; Platelet Aggregation - immunology ; Platelet Glycoprotein GPIb-IX Complex - genetics ; Platelet Glycoprotein GPIb-IX Complex - metabolism ; Platelet Glycoprotein GPIIb-IIIa Complex - metabolism ; Swine ; Thrombocytopenia - etiology ; Transplantation, Heterologous - methods ; von Willebrand Factor - genetics ; von Willebrand Factor - metabolism ; Xenotransplantation</subject><ispartof>Xenotransplantation (Københaven), 2016-05, Vol.23 (3), p.222-236</ispartof><rights>2016 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4686-22fd44c3264516a4ccca59ceb3ce72250b89f047b8186f1eb6e5e6eda524ecbd3</citedby><cites>FETCH-LOGICAL-c4686-22fd44c3264516a4ccca59ceb3ce72250b89f047b8186f1eb6e5e6eda524ecbd3</cites><orcidid>0000-0002-5059-5597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fxen.12236$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fxen.12236$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27188532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burdorf, Lars</creatorcontrib><creatorcontrib>Riner, Andrea</creatorcontrib><creatorcontrib>Rybak, Elana</creatorcontrib><creatorcontrib>Salles, Isabelle I.</creatorcontrib><creatorcontrib>De Meyer, Simon F.</creatorcontrib><creatorcontrib>Shah, Aakash</creatorcontrib><creatorcontrib>Quinn, Kevin J.</creatorcontrib><creatorcontrib>Harris, Donald</creatorcontrib><creatorcontrib>Zhang, Tianshu</creatorcontrib><creatorcontrib>Parsell, Dawn</creatorcontrib><creatorcontrib>Ali, Franchesca</creatorcontrib><creatorcontrib>Schwartz, Evan</creatorcontrib><creatorcontrib>Kang, Elizabeth</creatorcontrib><creatorcontrib>Cheng, Xiangfei</creatorcontrib><creatorcontrib>Sievert, Evelyn</creatorcontrib><creatorcontrib>Zhao, Yuming</creatorcontrib><creatorcontrib>Braileanu, Gheorghe</creatorcontrib><creatorcontrib>Phelps, Carol J.</creatorcontrib><creatorcontrib>Ayares, David L.</creatorcontrib><creatorcontrib>Deckmyn, Hans</creatorcontrib><creatorcontrib>Pierson III, Richard N.</creatorcontrib><creatorcontrib>Azimzadeh, Agnes M.</creatorcontrib><title>Platelet sequestration and activation during GalTKO.hCD46 pig lung perfusion by human blood is primarily mediated by GPIb, GPIIb/IIIa, and von Willebrand Factor</title><title>Xenotransplantation (Københaven)</title><addtitle>Xenotransplantation</addtitle><description>Background Here, we ask whether platelet GPIb and GPIIb/IIIa receptors modulate platelet sequestration and activation during GalTKO.hCD46 pig lung xenograft perfusion. Methods GalTKO.hCD46 transgenic pig lungs were perfused with heparinized fresh human blood. Results from perfusions in which αGPIb Fab (6B4, 10 mg/l blood, n = 6), αGPIIb/IIIa Fab (ReoPro, 3.5 mg/l blood, n = 6), or both drugs (n = 4) were administered to the perfusate were compared to two additional groups in which the donor pig received 1‐desamino‐8‐d‐arginine vasopressin (DDAVP), 3 μg/kg (to pre‐deplete von Willebrand Factor (pVWF), the main GPIb ligand), with or without αGPIb (n = 6 each). Results Platelet sequestration was significantly delayed in αGPIb, αGPIb+DDAVP, and αGPIb+αGPIIb/IIIa groups. Median lung “survival” was significantly longer (&gt;240 vs. 162 min reference, p = 0.016), and platelet activation (as CD62P and βTG) were significantly inhibited, when pigs were pre‐treated with DDAVP, with or without αGPIb Fab treatment. Pulmonary vascular resistance rise was not significantly attenuated in any group, and was associated with residual thromboxane and histamine elaboration. Conclusions The GPIb‐VWF and GPIIb/IIIa axes play important roles in platelet sequestration and coagulation cascade activation during GalTKO.hCD46 lung xenograft injury. GPIb blockade significantly reduces platelet activation and delays platelet sequestration in this xenolung rejection model, an effect amplified by adding αGPIIb/IIIa blockade or depletion of VWF from pig lung.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Blood Platelets - cytology</subject><subject>coagulation</subject><subject>ex-vivo perfusion</subject><subject>Fab</subject><subject>GalTKO.hCD46</subject><subject>Glycoprotein</subject><subject>GPIb</subject><subject>GPIIb/IIIa</subject><subject>Graft Survival - immunology</subject><subject>Heterografts - immunology</subject><subject>Humans</subject><subject>lung</subject><subject>Lung - immunology</subject><subject>Lung - metabolism</subject><subject>Lung Transplantation - methods</subject><subject>platelet activation</subject><subject>Platelet Activation - physiology</subject><subject>Platelet Aggregation - genetics</subject><subject>Platelet Aggregation - immunology</subject><subject>Platelet Glycoprotein GPIb-IX Complex - genetics</subject><subject>Platelet Glycoprotein GPIb-IX Complex - metabolism</subject><subject>Platelet Glycoprotein GPIIb-IIIa Complex - metabolism</subject><subject>Swine</subject><subject>Thrombocytopenia - etiology</subject><subject>Transplantation, Heterologous - methods</subject><subject>von Willebrand Factor - genetics</subject><subject>von Willebrand Factor - metabolism</subject><subject>Xenotransplantation</subject><issn>0908-665X</issn><issn>1399-3089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAUhSMEokNhwQsgL0FqZvwTO86STtsQUU2LKGp3luPctAbPZLCT0nkbHhVn0naHF7av9d1z5HuS5D3BcxLX4gE2c0IpEy-SGWFFkTIsi5fJDBdYpkLwm4PkTQg_McaMS_46OaA5kZIzOkv-Xjrdg4MeBfg9QOi97m23QXrTIG16ez-VzeDt5haV2l19vZjfLU8ygbb2Frkhvm7Bt0MYsXqH7oa1jhfXdQ2yAW29XWtv3Q6tobHRqhmh8rKqj8a9qhdVVemjvd99VLi2zkHtx_Is-nf-bfKq1S7Au8fzMPlxdnq1_JKeX5TV8vN5ajIhRUpp22SZYVRknAidGWM0LwzUzEBOKce1LFqc5bUkUrQEagEcBDSa0wxM3bDD5OOku_XdfhBqbYMB5_QGuiEokhdc5pko8oh-mlDjuxA8tGr65U4RrMZAVAxE7QOJ7IdH2aGOE3gmnxKIwGIC_lgHu_8rqZvT1ZNkOnXY0MPDc4f2v5TIWc7V9apUJ6vvxTe2OlYl-wcQzqWC</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Burdorf, Lars</creator><creator>Riner, Andrea</creator><creator>Rybak, Elana</creator><creator>Salles, Isabelle I.</creator><creator>De Meyer, Simon F.</creator><creator>Shah, Aakash</creator><creator>Quinn, Kevin J.</creator><creator>Harris, Donald</creator><creator>Zhang, Tianshu</creator><creator>Parsell, Dawn</creator><creator>Ali, Franchesca</creator><creator>Schwartz, Evan</creator><creator>Kang, Elizabeth</creator><creator>Cheng, Xiangfei</creator><creator>Sievert, Evelyn</creator><creator>Zhao, Yuming</creator><creator>Braileanu, Gheorghe</creator><creator>Phelps, Carol J.</creator><creator>Ayares, David L.</creator><creator>Deckmyn, Hans</creator><creator>Pierson III, Richard N.</creator><creator>Azimzadeh, Agnes M.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5059-5597</orcidid></search><sort><creationdate>201605</creationdate><title>Platelet sequestration and activation during GalTKO.hCD46 pig lung perfusion by human blood is primarily mediated by GPIb, GPIIb/IIIa, and von Willebrand Factor</title><author>Burdorf, Lars ; Riner, Andrea ; Rybak, Elana ; Salles, Isabelle I. ; De Meyer, Simon F. ; Shah, Aakash ; Quinn, Kevin J. ; Harris, Donald ; Zhang, Tianshu ; Parsell, Dawn ; Ali, Franchesca ; Schwartz, Evan ; Kang, Elizabeth ; Cheng, Xiangfei ; Sievert, Evelyn ; Zhao, Yuming ; Braileanu, Gheorghe ; Phelps, Carol J. ; Ayares, David L. ; Deckmyn, Hans ; Pierson III, Richard N. ; Azimzadeh, Agnes M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4686-22fd44c3264516a4ccca59ceb3ce72250b89f047b8186f1eb6e5e6eda524ecbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Blood Platelets - cytology</topic><topic>coagulation</topic><topic>ex-vivo perfusion</topic><topic>Fab</topic><topic>GalTKO.hCD46</topic><topic>Glycoprotein</topic><topic>GPIb</topic><topic>GPIIb/IIIa</topic><topic>Graft Survival - immunology</topic><topic>Heterografts - immunology</topic><topic>Humans</topic><topic>lung</topic><topic>Lung - immunology</topic><topic>Lung - metabolism</topic><topic>Lung Transplantation - methods</topic><topic>platelet activation</topic><topic>Platelet Activation - physiology</topic><topic>Platelet Aggregation - genetics</topic><topic>Platelet Aggregation - immunology</topic><topic>Platelet Glycoprotein GPIb-IX Complex - genetics</topic><topic>Platelet Glycoprotein GPIb-IX Complex - metabolism</topic><topic>Platelet Glycoprotein GPIIb-IIIa Complex - metabolism</topic><topic>Swine</topic><topic>Thrombocytopenia - etiology</topic><topic>Transplantation, Heterologous - methods</topic><topic>von Willebrand Factor - genetics</topic><topic>von Willebrand Factor - metabolism</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burdorf, Lars</creatorcontrib><creatorcontrib>Riner, Andrea</creatorcontrib><creatorcontrib>Rybak, Elana</creatorcontrib><creatorcontrib>Salles, Isabelle I.</creatorcontrib><creatorcontrib>De Meyer, Simon F.</creatorcontrib><creatorcontrib>Shah, Aakash</creatorcontrib><creatorcontrib>Quinn, Kevin J.</creatorcontrib><creatorcontrib>Harris, Donald</creatorcontrib><creatorcontrib>Zhang, Tianshu</creatorcontrib><creatorcontrib>Parsell, Dawn</creatorcontrib><creatorcontrib>Ali, Franchesca</creatorcontrib><creatorcontrib>Schwartz, Evan</creatorcontrib><creatorcontrib>Kang, Elizabeth</creatorcontrib><creatorcontrib>Cheng, Xiangfei</creatorcontrib><creatorcontrib>Sievert, Evelyn</creatorcontrib><creatorcontrib>Zhao, Yuming</creatorcontrib><creatorcontrib>Braileanu, Gheorghe</creatorcontrib><creatorcontrib>Phelps, Carol J.</creatorcontrib><creatorcontrib>Ayares, David L.</creatorcontrib><creatorcontrib>Deckmyn, Hans</creatorcontrib><creatorcontrib>Pierson III, Richard N.</creatorcontrib><creatorcontrib>Azimzadeh, Agnes M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Xenotransplantation (Københaven)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burdorf, Lars</au><au>Riner, Andrea</au><au>Rybak, Elana</au><au>Salles, Isabelle I.</au><au>De Meyer, Simon F.</au><au>Shah, Aakash</au><au>Quinn, Kevin J.</au><au>Harris, Donald</au><au>Zhang, Tianshu</au><au>Parsell, Dawn</au><au>Ali, Franchesca</au><au>Schwartz, Evan</au><au>Kang, Elizabeth</au><au>Cheng, Xiangfei</au><au>Sievert, Evelyn</au><au>Zhao, Yuming</au><au>Braileanu, Gheorghe</au><au>Phelps, Carol J.</au><au>Ayares, David L.</au><au>Deckmyn, Hans</au><au>Pierson III, Richard N.</au><au>Azimzadeh, Agnes M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Platelet sequestration and activation during GalTKO.hCD46 pig lung perfusion by human blood is primarily mediated by GPIb, GPIIb/IIIa, and von Willebrand Factor</atitle><jtitle>Xenotransplantation (Københaven)</jtitle><addtitle>Xenotransplantation</addtitle><date>2016-05</date><risdate>2016</risdate><volume>23</volume><issue>3</issue><spage>222</spage><epage>236</epage><pages>222-236</pages><issn>0908-665X</issn><eissn>1399-3089</eissn><notes>University of Maryland Clinical Translational Science Institute</notes><notes>University of Maryland General Clinical Research Center</notes><notes>United Therapeutics, Inc</notes><notes>NIAID - No. U19 AI 090959</notes><notes>ArticleID:XEN12236</notes><notes>University of Maryland, Baltimore Foundation</notes><notes>ark:/67375/WNG-DNS9Q3NB-G</notes><notes>istex:3E93DFEFEC9BC1D413F5F9B86F34E5A7F0BB5D72</notes><notes>NIH</notes><notes>Revivicor, Inc</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Background Here, we ask whether platelet GPIb and GPIIb/IIIa receptors modulate platelet sequestration and activation during GalTKO.hCD46 pig lung xenograft perfusion. Methods GalTKO.hCD46 transgenic pig lungs were perfused with heparinized fresh human blood. Results from perfusions in which αGPIb Fab (6B4, 10 mg/l blood, n = 6), αGPIIb/IIIa Fab (ReoPro, 3.5 mg/l blood, n = 6), or both drugs (n = 4) were administered to the perfusate were compared to two additional groups in which the donor pig received 1‐desamino‐8‐d‐arginine vasopressin (DDAVP), 3 μg/kg (to pre‐deplete von Willebrand Factor (pVWF), the main GPIb ligand), with or without αGPIb (n = 6 each). Results Platelet sequestration was significantly delayed in αGPIb, αGPIb+DDAVP, and αGPIb+αGPIIb/IIIa groups. Median lung “survival” was significantly longer (&gt;240 vs. 162 min reference, p = 0.016), and platelet activation (as CD62P and βTG) were significantly inhibited, when pigs were pre‐treated with DDAVP, with or without αGPIb Fab treatment. Pulmonary vascular resistance rise was not significantly attenuated in any group, and was associated with residual thromboxane and histamine elaboration. Conclusions The GPIb‐VWF and GPIIb/IIIa axes play important roles in platelet sequestration and coagulation cascade activation during GalTKO.hCD46 lung xenograft injury. GPIb blockade significantly reduces platelet activation and delays platelet sequestration in this xenolung rejection model, an effect amplified by adding αGPIIb/IIIa blockade or depletion of VWF from pig lung.</abstract><cop>Denmark</cop><pub>Blackwell Publishing Ltd</pub><pmid>27188532</pmid><doi>10.1111/xen.12236</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5059-5597</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0908-665X
ispartof Xenotransplantation (Københaven), 2016-05, Vol.23 (3), p.222-236
issn 0908-665X
1399-3089
language eng
recordid cdi_proquest_miscellaneous_1795874697
source Wiley Online Library
subjects Animals
Animals, Genetically Modified
Blood Platelets - cytology
coagulation
ex-vivo perfusion
Fab
GalTKO.hCD46
Glycoprotein
GPIb
GPIIb/IIIa
Graft Survival - immunology
Heterografts - immunology
Humans
lung
Lung - immunology
Lung - metabolism
Lung Transplantation - methods
platelet activation
Platelet Activation - physiology
Platelet Aggregation - genetics
Platelet Aggregation - immunology
Platelet Glycoprotein GPIb-IX Complex - genetics
Platelet Glycoprotein GPIb-IX Complex - metabolism
Platelet Glycoprotein GPIIb-IIIa Complex - metabolism
Swine
Thrombocytopenia - etiology
Transplantation, Heterologous - methods
von Willebrand Factor - genetics
von Willebrand Factor - metabolism
Xenotransplantation
title Platelet sequestration and activation during GalTKO.hCD46 pig lung perfusion by human blood is primarily mediated by GPIb, GPIIb/IIIa, and von Willebrand Factor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T17%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Platelet%20sequestration%20and%20activation%20during%20GalTKO.hCD46%20pig%20lung%20perfusion%20by%20human%20blood%20is%20primarily%20mediated%20by%20GPIb,%20GPIIb/IIIa,%20and%20von%20Willebrand%20Factor&rft.jtitle=Xenotransplantation%20(K%C3%B8benhaven)&rft.au=Burdorf,%20Lars&rft.date=2016-05&rft.volume=23&rft.issue=3&rft.spage=222&rft.epage=236&rft.pages=222-236&rft.issn=0908-665X&rft.eissn=1399-3089&rft_id=info:doi/10.1111/xen.12236&rft_dat=%3Cproquest_cross%3E1795874697%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4686-22fd44c3264516a4ccca59ceb3ce72250b89f047b8186f1eb6e5e6eda524ecbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1795874697&rft_id=info:pmid/27188532&rfr_iscdi=true