Loading…

Measuring Douglas-Fir Crown Growth with Multitemporal LiDAR

Crown volume, the geometric space occupied by the crown, along with the change (growth) of crown volume over time can be an important part of multitemporal forest analyses but is expensive and time-consuming to obtain through conventional forest survey methods for large or remote areas. Field- and l...

Full description

Saved in:
Bibliographic Details
Published in:Forest science 2016-04, Vol.62 (2), p.200-212
Main Authors: Frew, Michael S., Evans, David L., Londo, H. Alexis, Cooke, William H., Irby, Derek
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c298t-dcb464973de6fe7b5ac26d4f77bbd67c7f225301bf366c0f276d4dc61b22b8493
cites
container_end_page 212
container_issue 2
container_start_page 200
container_title Forest science
container_volume 62
creator Frew, Michael S.
Evans, David L.
Londo, H. Alexis
Cooke, William H.
Irby, Derek
description Crown volume, the geometric space occupied by the crown, along with the change (growth) of crown volume over time can be an important part of multitemporal forest analyses but is expensive and time-consuming to obtain through conventional forest survey methods for large or remote areas. Field- and light detection and ranging (LiDAR)-derived tree height and height to live crown measurements were compared to establish the relationships of these variables with respect to use in crown volume modeling. LiDAR-derived crown volume growth was compared with expected crown volume growth based on field data collected on 220 Douglas-fir trees in the Panther Creek, Oregon, watershed. Regression analysis of expected crown volume to LiDAR-derived crown volume in 2008 and 2012 resulted in R^sup 2^ values of 0.45 and 0.53, respectively. A paired t-test between the expected crown volume growth and the LiDAR-derived crown volume growth resulted in a P value of 0.85, indicating that LiDAR-measured change in crown volume over time was not significantly different from the expected amount of change. With further research, multitemporal LiDAR could become a viable tool for forest change analyses.
doi_str_mv 10.5849/forsci.14-062
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790975684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4046495061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-dcb464973de6fe7b5ac26d4f77bbd67c7f225301bf366c0f276d4dc61b22b8493</originalsourceid><addsrcrecordid>eNpdkEtLAzEURoMoWKtL9wNu3KTmNckEV6UvhRZBFNyFSSapKdNJTWYo_nsjdeXmu4t7-Lj3AHCL0aSsmHxwISbjJ5hBxMkZGGFJK0gFrc7BCCFcQsHkxyW4SmmHEKooIiPwuLF1GqLvtsU8DNu2TnDpYzGL4dgVq5z9Z3H0OTZD2_ve7g8h1m2x9vPp6zW4cHWb7M3fHIP35eJt9gTXL6vn2XQNDZFVDxujGWdS0MZyZ4Uua0N4w5wQWjdcGOEIKSnC2lHODXJE5G1jONaE6PwXHYP7U-8hhq_Bpl7tfTK2bevOhiEpLCSSouQVy-jdP3QXhtjl6zJVCcQpJThT8ESZGFKK1qlD9Ps6fiuM1K9KdVKpMFNZJf0BcQFnLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787063321</pqid></control><display><type>article</type><title>Measuring Douglas-Fir Crown Growth with Multitemporal LiDAR</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Frew, Michael S. ; Evans, David L. ; Londo, H. Alexis ; Cooke, William H. ; Irby, Derek</creator><creatorcontrib>Frew, Michael S. ; Evans, David L. ; Londo, H. Alexis ; Cooke, William H. ; Irby, Derek</creatorcontrib><description>Crown volume, the geometric space occupied by the crown, along with the change (growth) of crown volume over time can be an important part of multitemporal forest analyses but is expensive and time-consuming to obtain through conventional forest survey methods for large or remote areas. Field- and light detection and ranging (LiDAR)-derived tree height and height to live crown measurements were compared to establish the relationships of these variables with respect to use in crown volume modeling. LiDAR-derived crown volume growth was compared with expected crown volume growth based on field data collected on 220 Douglas-fir trees in the Panther Creek, Oregon, watershed. Regression analysis of expected crown volume to LiDAR-derived crown volume in 2008 and 2012 resulted in R^sup 2^ values of 0.45 and 0.53, respectively. A paired t-test between the expected crown volume growth and the LiDAR-derived crown volume growth resulted in a P value of 0.85, indicating that LiDAR-measured change in crown volume over time was not significantly different from the expected amount of change. With further research, multitemporal LiDAR could become a viable tool for forest change analyses.</description><identifier>ISSN: 0015-749X</identifier><identifier>EISSN: 1938-3738</identifier><identifier>DOI: 10.5849/forsci.14-062</identifier><language>eng</language><publisher>Bethesda: Oxford University Press</publisher><subject>Automation ; Forest management ; Growth models ; Remote sensing ; Studies ; Trees</subject><ispartof>Forest science, 2016-04, Vol.62 (2), p.200-212</ispartof><rights>Copyright Society of American Foresters Apr 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-dcb464973de6fe7b5ac26d4f77bbd67c7f225301bf366c0f276d4dc61b22b8493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Frew, Michael S.</creatorcontrib><creatorcontrib>Evans, David L.</creatorcontrib><creatorcontrib>Londo, H. Alexis</creatorcontrib><creatorcontrib>Cooke, William H.</creatorcontrib><creatorcontrib>Irby, Derek</creatorcontrib><title>Measuring Douglas-Fir Crown Growth with Multitemporal LiDAR</title><title>Forest science</title><description>Crown volume, the geometric space occupied by the crown, along with the change (growth) of crown volume over time can be an important part of multitemporal forest analyses but is expensive and time-consuming to obtain through conventional forest survey methods for large or remote areas. Field- and light detection and ranging (LiDAR)-derived tree height and height to live crown measurements were compared to establish the relationships of these variables with respect to use in crown volume modeling. LiDAR-derived crown volume growth was compared with expected crown volume growth based on field data collected on 220 Douglas-fir trees in the Panther Creek, Oregon, watershed. Regression analysis of expected crown volume to LiDAR-derived crown volume in 2008 and 2012 resulted in R^sup 2^ values of 0.45 and 0.53, respectively. A paired t-test between the expected crown volume growth and the LiDAR-derived crown volume growth resulted in a P value of 0.85, indicating that LiDAR-measured change in crown volume over time was not significantly different from the expected amount of change. With further research, multitemporal LiDAR could become a viable tool for forest change analyses.</description><subject>Automation</subject><subject>Forest management</subject><subject>Growth models</subject><subject>Remote sensing</subject><subject>Studies</subject><subject>Trees</subject><issn>0015-749X</issn><issn>1938-3738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEURoMoWKtL9wNu3KTmNckEV6UvhRZBFNyFSSapKdNJTWYo_nsjdeXmu4t7-Lj3AHCL0aSsmHxwISbjJ5hBxMkZGGFJK0gFrc7BCCFcQsHkxyW4SmmHEKooIiPwuLF1GqLvtsU8DNu2TnDpYzGL4dgVq5z9Z3H0OTZD2_ve7g8h1m2x9vPp6zW4cHWb7M3fHIP35eJt9gTXL6vn2XQNDZFVDxujGWdS0MZyZ4Uua0N4w5wQWjdcGOEIKSnC2lHODXJE5G1jONaE6PwXHYP7U-8hhq_Bpl7tfTK2bevOhiEpLCSSouQVy-jdP3QXhtjl6zJVCcQpJThT8ESZGFKK1qlD9Ps6fiuM1K9KdVKpMFNZJf0BcQFnLA</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Frew, Michael S.</creator><creator>Evans, David L.</creator><creator>Londo, H. Alexis</creator><creator>Cooke, William H.</creator><creator>Irby, Derek</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>20160401</creationdate><title>Measuring Douglas-Fir Crown Growth with Multitemporal LiDAR</title><author>Frew, Michael S. ; Evans, David L. ; Londo, H. Alexis ; Cooke, William H. ; Irby, Derek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-dcb464973de6fe7b5ac26d4f77bbd67c7f225301bf366c0f276d4dc61b22b8493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automation</topic><topic>Forest management</topic><topic>Growth models</topic><topic>Remote sensing</topic><topic>Studies</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frew, Michael S.</creatorcontrib><creatorcontrib>Evans, David L.</creatorcontrib><creatorcontrib>Londo, H. Alexis</creatorcontrib><creatorcontrib>Cooke, William H.</creatorcontrib><creatorcontrib>Irby, Derek</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agriculture Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Forest science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frew, Michael S.</au><au>Evans, David L.</au><au>Londo, H. Alexis</au><au>Cooke, William H.</au><au>Irby, Derek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring Douglas-Fir Crown Growth with Multitemporal LiDAR</atitle><jtitle>Forest science</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>62</volume><issue>2</issue><spage>200</spage><epage>212</epage><pages>200-212</pages><issn>0015-749X</issn><eissn>1938-3738</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Crown volume, the geometric space occupied by the crown, along with the change (growth) of crown volume over time can be an important part of multitemporal forest analyses but is expensive and time-consuming to obtain through conventional forest survey methods for large or remote areas. Field- and light detection and ranging (LiDAR)-derived tree height and height to live crown measurements were compared to establish the relationships of these variables with respect to use in crown volume modeling. LiDAR-derived crown volume growth was compared with expected crown volume growth based on field data collected on 220 Douglas-fir trees in the Panther Creek, Oregon, watershed. Regression analysis of expected crown volume to LiDAR-derived crown volume in 2008 and 2012 resulted in R^sup 2^ values of 0.45 and 0.53, respectively. A paired t-test between the expected crown volume growth and the LiDAR-derived crown volume growth resulted in a P value of 0.85, indicating that LiDAR-measured change in crown volume over time was not significantly different from the expected amount of change. With further research, multitemporal LiDAR could become a viable tool for forest change analyses.</abstract><cop>Bethesda</cop><pub>Oxford University Press</pub><doi>10.5849/forsci.14-062</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-749X
ispartof Forest science, 2016-04, Vol.62 (2), p.200-212
issn 0015-749X
1938-3738
language eng
recordid cdi_proquest_miscellaneous_1790975684
source Oxford University Press Journals All Titles (1996-Current)
subjects Automation
Forest management
Growth models
Remote sensing
Studies
Trees
title Measuring Douglas-Fir Crown Growth with Multitemporal LiDAR
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T15%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20Douglas-Fir%20Crown%20Growth%20with%20Multitemporal%20LiDAR&rft.jtitle=Forest%20science&rft.au=Frew,%20Michael%20S.&rft.date=2016-04-01&rft.volume=62&rft.issue=2&rft.spage=200&rft.epage=212&rft.pages=200-212&rft.issn=0015-749X&rft.eissn=1938-3738&rft_id=info:doi/10.5849/forsci.14-062&rft_dat=%3Cproquest_cross%3E4046495061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-dcb464973de6fe7b5ac26d4f77bbd67c7f225301bf366c0f276d4dc61b22b8493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787063321&rft_id=info:pmid/&rfr_iscdi=true