Loading…

Nasal pressure recordings for automatic snoring detection

This study presents a rule-based method for automated, real-time snoring detection using nasal pressure recordings during overnight sleep. Although nasal pressure recordings provide information regarding nocturnal breathing abnormalities in a polysomnography (PSG) study or continuous positive airway...

Full description

Saved in:
Bibliographic Details
Published in:Medical & biological engineering & computing 2015-11, Vol.53 (11), p.1103-1111
Main Authors: Lee, Hyo-Ki, Kim, Hojoong, Lee, Kyoung-Joung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c578t-466ec7bd5b1f679dc0d5b120b13e9e7198b2b133f38431bce3fe00e14cb0a4053
cites cdi_FETCH-LOGICAL-c578t-466ec7bd5b1f679dc0d5b120b13e9e7198b2b133f38431bce3fe00e14cb0a4053
container_end_page 1111
container_issue 11
container_start_page 1103
container_title Medical & biological engineering & computing
container_volume 53
creator Lee, Hyo-Ki
Kim, Hojoong
Lee, Kyoung-Joung
description This study presents a rule-based method for automated, real-time snoring detection using nasal pressure recordings during overnight sleep. Although nasal pressure recordings provide information regarding nocturnal breathing abnormalities in a polysomnography (PSG) study or continuous positive airway pressure (CPAP) system, an objective assessment of snoring detection using these nasal pressure recordings has not yet been reported in the literature. Nasal pressure recordings were obtained from 55 patients with obstructive sleep apnea. The PSG data were also recorded simultaneously to evaluate the proposed method. This rule-based method for automatic, real-time snoring detection employed preprocessing, short-time energy and the central difference method. Using this methodology, a sensitivity of 85.4 % and a positive predictive value of 92.0 % were achieved in all patients. Therefore, we concluded that the proposed method is a simple, portable and cost-effective tool for real-time snoring detection in PSG and CPAP systems that does not require acoustic analysis using a microphone.
doi_str_mv 10.1007/s11517-015-1388-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770365042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1729349008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-466ec7bd5b1f679dc0d5b120b13e9e7198b2b133f38431bce3fe00e14cb0a4053</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVp6W42_QG9FEMvvTiZ0YclHcOSNIEluTRnYcvj4mXX2kj2If--MrstIVDYkwbp0TsaPYx9RbhCAH2dEBXqElCVKIwp-Qe2RC2xBCnlR7YElJBP0SzYRUpbAI6Ky89swSthORpcMvtYp3pXHCKlNEUqIvkQ2374nYouxKKexrCvx94XaQgxbxctjeTHPgyX7FNX7xJ9Oa0r9nx3-2t9X26efj6sbzalV9qMpawq8rppVYNdpW3rYS45NCjIkkZrGp5r0QkjBTaeREcAhNI3UEtQYsV-HHMPMbxMlEa375On3a4eKEzJodYgKgWSn4EKZTnP05-BciukBTAZ_f4O3YYpDnnmmTIKtEWZKTxSPoaUInXuEPt9HV8dgpttuaMtl2252Zab3_vtlDw1e2r_3firJwP8CKTD_PkU37T-b-ofgZKdEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728507914</pqid></control><display><type>article</type><title>Nasal pressure recordings for automatic snoring detection</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Lee, Hyo-Ki ; Kim, Hojoong ; Lee, Kyoung-Joung</creator><creatorcontrib>Lee, Hyo-Ki ; Kim, Hojoong ; Lee, Kyoung-Joung</creatorcontrib><description>This study presents a rule-based method for automated, real-time snoring detection using nasal pressure recordings during overnight sleep. Although nasal pressure recordings provide information regarding nocturnal breathing abnormalities in a polysomnography (PSG) study or continuous positive airway pressure (CPAP) system, an objective assessment of snoring detection using these nasal pressure recordings has not yet been reported in the literature. Nasal pressure recordings were obtained from 55 patients with obstructive sleep apnea. The PSG data were also recorded simultaneously to evaluate the proposed method. This rule-based method for automatic, real-time snoring detection employed preprocessing, short-time energy and the central difference method. Using this methodology, a sensitivity of 85.4 % and a positive predictive value of 92.0 % were achieved in all patients. Therefore, we concluded that the proposed method is a simple, portable and cost-effective tool for real-time snoring detection in PSG and CPAP systems that does not require acoustic analysis using a microphone.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-015-1388-2</identifier><identifier>PMID: 26392181</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustics ; Aged ; Algorithms ; Analysis ; Assessments ; Automation ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Body mass index ; Computer Applications ; Cost analysis ; Female ; Human Physiology ; Humans ; Imaging ; Male ; Medical diagnosis ; Microphones ; Middle Aged ; Nose ; Nose - physiology ; Original Article ; Patients ; Polysomnography - methods ; Pressure ; Radiology ; Real time ; Recording ; Respiration ; Sensitivity and Specificity ; Sensors ; Signal Processing, Computer-Assisted ; Sleep ; Sleep apnea ; Sleep deprivation ; Sleep disorders ; Snoring - diagnosis ; Snoring - physiopathology ; Software ; Studies</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2015-11, Vol.53 (11), p.1103-1111</ispartof><rights>International Federation for Medical and Biological Engineering 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-466ec7bd5b1f679dc0d5b120b13e9e7198b2b133f38431bce3fe00e14cb0a4053</citedby><cites>FETCH-LOGICAL-c578t-466ec7bd5b1f679dc0d5b120b13e9e7198b2b133f38431bce3fe00e14cb0a4053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1728507914/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1728507914?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,783,787,11700,27936,27937,36072,36073,44375,75223</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26392181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hyo-Ki</creatorcontrib><creatorcontrib>Kim, Hojoong</creatorcontrib><creatorcontrib>Lee, Kyoung-Joung</creatorcontrib><title>Nasal pressure recordings for automatic snoring detection</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>This study presents a rule-based method for automated, real-time snoring detection using nasal pressure recordings during overnight sleep. Although nasal pressure recordings provide information regarding nocturnal breathing abnormalities in a polysomnography (PSG) study or continuous positive airway pressure (CPAP) system, an objective assessment of snoring detection using these nasal pressure recordings has not yet been reported in the literature. Nasal pressure recordings were obtained from 55 patients with obstructive sleep apnea. The PSG data were also recorded simultaneously to evaluate the proposed method. This rule-based method for automatic, real-time snoring detection employed preprocessing, short-time energy and the central difference method. Using this methodology, a sensitivity of 85.4 % and a positive predictive value of 92.0 % were achieved in all patients. Therefore, we concluded that the proposed method is a simple, portable and cost-effective tool for real-time snoring detection in PSG and CPAP systems that does not require acoustic analysis using a microphone.</description><subject>Acoustics</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Assessments</subject><subject>Automation</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Body mass index</subject><subject>Computer Applications</subject><subject>Cost analysis</subject><subject>Female</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Imaging</subject><subject>Male</subject><subject>Medical diagnosis</subject><subject>Microphones</subject><subject>Middle Aged</subject><subject>Nose</subject><subject>Nose - physiology</subject><subject>Original Article</subject><subject>Patients</subject><subject>Polysomnography - methods</subject><subject>Pressure</subject><subject>Radiology</subject><subject>Real time</subject><subject>Recording</subject><subject>Respiration</subject><subject>Sensitivity and Specificity</subject><subject>Sensors</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sleep</subject><subject>Sleep apnea</subject><subject>Sleep deprivation</subject><subject>Sleep disorders</subject><subject>Snoring - diagnosis</subject><subject>Snoring - physiopathology</subject><subject>Software</subject><subject>Studies</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkU1r3DAQhkVp6W42_QG9FEMvvTiZ0YclHcOSNIEluTRnYcvj4mXX2kj2If--MrstIVDYkwbp0TsaPYx9RbhCAH2dEBXqElCVKIwp-Qe2RC2xBCnlR7YElJBP0SzYRUpbAI6Ky89swSthORpcMvtYp3pXHCKlNEUqIvkQ2374nYouxKKexrCvx94XaQgxbxctjeTHPgyX7FNX7xJ9Oa0r9nx3-2t9X26efj6sbzalV9qMpawq8rppVYNdpW3rYS45NCjIkkZrGp5r0QkjBTaeREcAhNI3UEtQYsV-HHMPMbxMlEa375On3a4eKEzJodYgKgWSn4EKZTnP05-BciukBTAZ_f4O3YYpDnnmmTIKtEWZKTxSPoaUInXuEPt9HV8dgpttuaMtl2252Zab3_vtlDw1e2r_3firJwP8CKTD_PkU37T-b-ofgZKdEA</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Lee, Hyo-Ki</creator><creator>Kim, Hojoong</creator><creator>Lee, Kyoung-Joung</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20151101</creationdate><title>Nasal pressure recordings for automatic snoring detection</title><author>Lee, Hyo-Ki ; Kim, Hojoong ; Lee, Kyoung-Joung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-466ec7bd5b1f679dc0d5b120b13e9e7198b2b133f38431bce3fe00e14cb0a4053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustics</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Assessments</topic><topic>Automation</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Body mass index</topic><topic>Computer Applications</topic><topic>Cost analysis</topic><topic>Female</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Imaging</topic><topic>Male</topic><topic>Medical diagnosis</topic><topic>Microphones</topic><topic>Middle Aged</topic><topic>Nose</topic><topic>Nose - physiology</topic><topic>Original Article</topic><topic>Patients</topic><topic>Polysomnography - methods</topic><topic>Pressure</topic><topic>Radiology</topic><topic>Real time</topic><topic>Recording</topic><topic>Respiration</topic><topic>Sensitivity and Specificity</topic><topic>Sensors</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sleep</topic><topic>Sleep apnea</topic><topic>Sleep deprivation</topic><topic>Sleep disorders</topic><topic>Snoring - diagnosis</topic><topic>Snoring - physiopathology</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyo-Ki</creatorcontrib><creatorcontrib>Kim, Hojoong</creatorcontrib><creatorcontrib>Lee, Kyoung-Joung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hyo-Ki</au><au>Kim, Hojoong</au><au>Lee, Kyoung-Joung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nasal pressure recordings for automatic snoring detection</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>53</volume><issue>11</issue><spage>1103</spage><epage>1111</epage><pages>1103-1111</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>This study presents a rule-based method for automated, real-time snoring detection using nasal pressure recordings during overnight sleep. Although nasal pressure recordings provide information regarding nocturnal breathing abnormalities in a polysomnography (PSG) study or continuous positive airway pressure (CPAP) system, an objective assessment of snoring detection using these nasal pressure recordings has not yet been reported in the literature. Nasal pressure recordings were obtained from 55 patients with obstructive sleep apnea. The PSG data were also recorded simultaneously to evaluate the proposed method. This rule-based method for automatic, real-time snoring detection employed preprocessing, short-time energy and the central difference method. Using this methodology, a sensitivity of 85.4 % and a positive predictive value of 92.0 % were achieved in all patients. Therefore, we concluded that the proposed method is a simple, portable and cost-effective tool for real-time snoring detection in PSG and CPAP systems that does not require acoustic analysis using a microphone.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26392181</pmid><doi>10.1007/s11517-015-1388-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2015-11, Vol.53 (11), p.1103-1111
issn 0140-0118
1741-0444
language eng
recordid cdi_proquest_miscellaneous_1770365042
source ABI/INFORM Global (ProQuest); Springer Nature; BSC - Ebsco (Business Source Ultimate)
subjects Acoustics
Aged
Algorithms
Analysis
Assessments
Automation
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Body mass index
Computer Applications
Cost analysis
Female
Human Physiology
Humans
Imaging
Male
Medical diagnosis
Microphones
Middle Aged
Nose
Nose - physiology
Original Article
Patients
Polysomnography - methods
Pressure
Radiology
Real time
Recording
Respiration
Sensitivity and Specificity
Sensors
Signal Processing, Computer-Assisted
Sleep
Sleep apnea
Sleep deprivation
Sleep disorders
Snoring - diagnosis
Snoring - physiopathology
Software
Studies
title Nasal pressure recordings for automatic snoring detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-19T18%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nasal%20pressure%20recordings%20for%20automatic%20snoring%20detection&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Lee,%20Hyo-Ki&rft.date=2015-11-01&rft.volume=53&rft.issue=11&rft.spage=1103&rft.epage=1111&rft.pages=1103-1111&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-015-1388-2&rft_dat=%3Cproquest_cross%3E1729349008%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-466ec7bd5b1f679dc0d5b120b13e9e7198b2b133f38431bce3fe00e14cb0a4053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1728507914&rft_id=info:pmid/26392181&rfr_iscdi=true