Loading…

On the prediction of the yield stress of unimodal and multimodal γ′ Nickel-base superalloys

[Display omitted] A new model for the yield stress in superalloys accounting for unimodal and multimodal γ′ size distributions is presented. A critique of the classic models on γ′ shearing is presented and important features not previously considered are incorporated in our model. This is extended t...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2015-10, Vol.98, p.377-390
Main Authors: Galindo-Nava, E.I., Connor, L.D., Rae, C.M.F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-4c8e1cbdacc01b744826b3026642909d899ce45e0206c203b70c8bb34b2870163
cites cdi_FETCH-LOGICAL-c389t-4c8e1cbdacc01b744826b3026642909d899ce45e0206c203b70c8bb34b2870163
container_end_page 390
container_issue
container_start_page 377
container_title Acta materialia
container_volume 98
creator Galindo-Nava, E.I.
Connor, L.D.
Rae, C.M.F.
description [Display omitted] A new model for the yield stress in superalloys accounting for unimodal and multimodal γ′ size distributions is presented. A critique of the classic models on γ′ shearing is presented and important features not previously considered are incorporated in our model. This is extended to account for multimodal particle size distribution effects by weighting the individual particle contribution to the total strength. This analysis is focused on powder metallurgy alloys. The yield stress and particle strengthening are predicted for eight superalloys containing wide variations in initial microstructure, composition and at temperatures up to 700°C. We demonstrate through a theoretical approach that the strength of alloys with multimodal γ′ is lower than those with unimodal γ′ radius in the vicinity of 10–30nm. For the first time, a parameter-free physics-based model is able to predict the yield stress in superalloys with complex microstructures, including unimodal and multimodal γ′ size. This has been possible by removing limitations inherent to the classical models. Such approach also enables critical evaluation of the relevant factors contributing to the yield strength of polycrystalline superalloys.
doi_str_mv 10.1016/j.actamat.2015.07.048
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744684501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645415005194</els_id><sourcerecordid>1744684501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-4c8e1cbdacc01b744826b3026642909d899ce45e0206c203b70c8bb34b2870163</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhSMEEqVwBKQs2SSMHSdxVggh_qSKbmCLZTtT4eLExXaQuuNMcA8OwUlIafesZubpvSfNlySnBHICpDpf5lJH2cmYUyBlDnUOjO8lE8LrIqOsLPbHvSibrGIlO0yOQlgCEFozmCTP8z6NL5iuPLZGR-P61C3-lLVB26Yhegxhow296VwrbSr7Nu0GG3fn99fPx2f6YPQr2kzJgGkYVuiltW4djpODhbQBT3ZzmjzdXD9e3WWz-e391eUs0wVvYsY0R6JVK7UGomrGOK1UAbSqGG2gaXnTaGQlAoVKUyhUDZorVTBFeT0iKKbJ2bZ35d3bgCGKzgSN1soe3RAEGTsrzkogo7XcWrV3IXhciJU3nfRrQUBseIql2PEUG54CajHyHHMX2xyOf7wb9CJog70euXnUUbTO_NPwC5QQgtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744684501</pqid></control><display><type>article</type><title>On the prediction of the yield stress of unimodal and multimodal γ′ Nickel-base superalloys</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Galindo-Nava, E.I. ; Connor, L.D. ; Rae, C.M.F.</creator><creatorcontrib>Galindo-Nava, E.I. ; Connor, L.D. ; Rae, C.M.F.</creatorcontrib><description>[Display omitted] A new model for the yield stress in superalloys accounting for unimodal and multimodal γ′ size distributions is presented. A critique of the classic models on γ′ shearing is presented and important features not previously considered are incorporated in our model. This is extended to account for multimodal particle size distribution effects by weighting the individual particle contribution to the total strength. This analysis is focused on powder metallurgy alloys. The yield stress and particle strengthening are predicted for eight superalloys containing wide variations in initial microstructure, composition and at temperatures up to 700°C. We demonstrate through a theoretical approach that the strength of alloys with multimodal γ′ is lower than those with unimodal γ′ radius in the vicinity of 10–30nm. For the first time, a parameter-free physics-based model is able to predict the yield stress in superalloys with complex microstructures, including unimodal and multimodal γ′ size. This has been possible by removing limitations inherent to the classical models. Such approach also enables critical evaluation of the relevant factors contributing to the yield strength of polycrystalline superalloys.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2015.07.048</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Alloys ; Deformation ; Mathematical models ; Microstructure ; Nickel ; Particle size distribution ; Precipitation hardening ; Strength ; Superalloys ; Yield strength ; Yield stress</subject><ispartof>Acta materialia, 2015-10, Vol.98, p.377-390</ispartof><rights>2015 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-4c8e1cbdacc01b744826b3026642909d899ce45e0206c203b70c8bb34b2870163</citedby><cites>FETCH-LOGICAL-c389t-4c8e1cbdacc01b744826b3026642909d899ce45e0206c203b70c8bb34b2870163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Galindo-Nava, E.I.</creatorcontrib><creatorcontrib>Connor, L.D.</creatorcontrib><creatorcontrib>Rae, C.M.F.</creatorcontrib><title>On the prediction of the yield stress of unimodal and multimodal γ′ Nickel-base superalloys</title><title>Acta materialia</title><description>[Display omitted] A new model for the yield stress in superalloys accounting for unimodal and multimodal γ′ size distributions is presented. A critique of the classic models on γ′ shearing is presented and important features not previously considered are incorporated in our model. This is extended to account for multimodal particle size distribution effects by weighting the individual particle contribution to the total strength. This analysis is focused on powder metallurgy alloys. The yield stress and particle strengthening are predicted for eight superalloys containing wide variations in initial microstructure, composition and at temperatures up to 700°C. We demonstrate through a theoretical approach that the strength of alloys with multimodal γ′ is lower than those with unimodal γ′ radius in the vicinity of 10–30nm. For the first time, a parameter-free physics-based model is able to predict the yield stress in superalloys with complex microstructures, including unimodal and multimodal γ′ size. This has been possible by removing limitations inherent to the classical models. Such approach also enables critical evaluation of the relevant factors contributing to the yield strength of polycrystalline superalloys.</description><subject>Alloys</subject><subject>Deformation</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Particle size distribution</subject><subject>Precipitation hardening</subject><subject>Strength</subject><subject>Superalloys</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhSMEEqVwBKQs2SSMHSdxVggh_qSKbmCLZTtT4eLExXaQuuNMcA8OwUlIafesZubpvSfNlySnBHICpDpf5lJH2cmYUyBlDnUOjO8lE8LrIqOsLPbHvSibrGIlO0yOQlgCEFozmCTP8z6NL5iuPLZGR-P61C3-lLVB26Yhegxhow296VwrbSr7Nu0GG3fn99fPx2f6YPQr2kzJgGkYVuiltW4djpODhbQBT3ZzmjzdXD9e3WWz-e391eUs0wVvYsY0R6JVK7UGomrGOK1UAbSqGG2gaXnTaGQlAoVKUyhUDZorVTBFeT0iKKbJ2bZ35d3bgCGKzgSN1soe3RAEGTsrzkogo7XcWrV3IXhciJU3nfRrQUBseIql2PEUG54CajHyHHMX2xyOf7wb9CJog70euXnUUbTO_NPwC5QQgtA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Galindo-Nava, E.I.</creator><creator>Connor, L.D.</creator><creator>Rae, C.M.F.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20151001</creationdate><title>On the prediction of the yield stress of unimodal and multimodal γ′ Nickel-base superalloys</title><author>Galindo-Nava, E.I. ; Connor, L.D. ; Rae, C.M.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-4c8e1cbdacc01b744826b3026642909d899ce45e0206c203b70c8bb34b2870163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Deformation</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Particle size distribution</topic><topic>Precipitation hardening</topic><topic>Strength</topic><topic>Superalloys</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galindo-Nava, E.I.</creatorcontrib><creatorcontrib>Connor, L.D.</creatorcontrib><creatorcontrib>Rae, C.M.F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galindo-Nava, E.I.</au><au>Connor, L.D.</au><au>Rae, C.M.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the prediction of the yield stress of unimodal and multimodal γ′ Nickel-base superalloys</atitle><jtitle>Acta materialia</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>98</volume><spage>377</spage><epage>390</epage><pages>377-390</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>[Display omitted] A new model for the yield stress in superalloys accounting for unimodal and multimodal γ′ size distributions is presented. A critique of the classic models on γ′ shearing is presented and important features not previously considered are incorporated in our model. This is extended to account for multimodal particle size distribution effects by weighting the individual particle contribution to the total strength. This analysis is focused on powder metallurgy alloys. The yield stress and particle strengthening are predicted for eight superalloys containing wide variations in initial microstructure, composition and at temperatures up to 700°C. We demonstrate through a theoretical approach that the strength of alloys with multimodal γ′ is lower than those with unimodal γ′ radius in the vicinity of 10–30nm. For the first time, a parameter-free physics-based model is able to predict the yield stress in superalloys with complex microstructures, including unimodal and multimodal γ′ size. This has been possible by removing limitations inherent to the classical models. Such approach also enables critical evaluation of the relevant factors contributing to the yield strength of polycrystalline superalloys.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2015.07.048</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2015-10, Vol.98, p.377-390
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_1744684501
source ScienceDirect Freedom Collection 2022-2024
subjects Alloys
Deformation
Mathematical models
Microstructure
Nickel
Particle size distribution
Precipitation hardening
Strength
Superalloys
Yield strength
Yield stress
title On the prediction of the yield stress of unimodal and multimodal γ′ Nickel-base superalloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T14%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20prediction%20of%20the%20yield%20stress%20of%20unimodal%20and%20multimodal%20%CE%B3%E2%80%B2%20Nickel-base%20superalloys&rft.jtitle=Acta%20materialia&rft.au=Galindo-Nava,%20E.I.&rft.date=2015-10-01&rft.volume=98&rft.spage=377&rft.epage=390&rft.pages=377-390&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2015.07.048&rft_dat=%3Cproquest_cross%3E1744684501%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-4c8e1cbdacc01b744826b3026642909d899ce45e0206c203b70c8bb34b2870163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1744684501&rft_id=info:pmid/&rfr_iscdi=true