Loading…

Fragmentation and dynamical collapse of the starless high-mass star-forming region IRDC 18310-4

Context. Because of their short evolutionary time-scales, the earliest stages of high-mass star formation prior to the existence of any embedded heating source have barely been characterized until today. Aims. We study the fragmentation and dynamical properties of a massive starless gas clump at the...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2013-05, Vol.553, p.1-11
Main Authors: Beuther, H., Linz, H., Tackenberg, J., Henning, Th, Krause, O., Ragan, S., Nielbock, M., Launhardt, R., Bihr, S., Schmiedeke, A., Smith, R., Sakai, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c464t-ee975ca95f06b1b8c20763e853a08855f66965f85368e14288a396865df194fe3
cites cdi_FETCH-LOGICAL-c464t-ee975ca95f06b1b8c20763e853a08855f66965f85368e14288a396865df194fe3
container_end_page 11
container_issue
container_start_page 1
container_title Astronomy and astrophysics (Berlin)
container_volume 553
creator Beuther, H.
Linz, H.
Tackenberg, J.
Henning, Th
Krause, O.
Ragan, S.
Nielbock, M.
Launhardt, R.
Bihr, S.
Schmiedeke, A.
Smith, R.
Sakai, T.
description Context. Because of their short evolutionary time-scales, the earliest stages of high-mass star formation prior to the existence of any embedded heating source have barely been characterized until today. Aims. We study the fragmentation and dynamical properties of a massive starless gas clump at the onset of high-mass star formation. Methods. Based on Herschel continuum data we identify a massive gas clump that remains far-infrared dark up to 100 μm wavelengths. The fragmentation and dynamical properties are investigated by means of Plateau de Bure Interferometer and Nobeyama 45 m single-dish spectral line and continuum observations. Results. The massive gas reservoir (between ~800 and ~1600 M⊙, depending on the assumed dust properties) fragments at spatial scales of ~18 000 AU in four cores. Comparing the spatial extent of this high-mass region with intermediate- to low-mass starless cores from the literature, we find that linear sizes do not vary significantly over the whole mass regime. However, the high-mass regions squeeze much more gas into these similar volumes and hence have orders of magnitude larger densities. The fragmentation properties of the presented low-to high-mass regions are consistent with gravitational instable Jeans fragmentation. Furthermore, we find multiple velocity components associated with the resolved cores. Recent radiative transfer hydrodynamic simulations of the dynamic collapse of massive gas clumps also result in multiple velocity components along the line of sight because of the clumpy structure of the regions. This result is supported by a ratio between viral and total gas mass for the whole region
doi_str_mv 10.1051/0004-6361/201220475
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671570444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1611612776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-ee975ca95f06b1b8c20763e853a08855f66965f85368e14288a396865df194fe3</originalsourceid><addsrcrecordid>eNqNUE1LAzEQDaJgrf4CLzl6ic13sketthYrQlF6DOk2aVf3oyZbsDev_k1_iVkqPQsDM2947zHzALgk-JpgQQYYY44kk2RAMaEUcyWOQI9wRhFWXB6D3oFxCs5ifEuQEs16wI6CXVWubm1bNDW09RIud7WtityWMG_K0m6ig42H7drB2NpQuhjhulitUWXT1K2Qb0JV1CsY3Kozmczuhj9f38mfYMTPwYm3ZXQXf70PXkf3L8MHNH0eT4Y3U5RzyVvkXKZEbjPhsVyQhc4pVpI5LZjFWgvhpcyk8AlL7QinWluWSS3F0pOMe8f64GrvuwnNx9bF1lRFzF36oHbNNhoiFREKc87_QSWpqEoH9AHbU_PQxBicN5tQVDbsDMGmy950yZouWXPIPqnQXlXE1n0eJDa8G6mYEkbjuSF0fjufPT6ZMfsFgvOEIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1611612776</pqid></control><display><type>article</type><title>Fragmentation and dynamical collapse of the starless high-mass star-forming region IRDC 18310-4</title><source>EZB Electronic Journals Library</source><creator>Beuther, H. ; Linz, H. ; Tackenberg, J. ; Henning, Th ; Krause, O. ; Ragan, S. ; Nielbock, M. ; Launhardt, R. ; Bihr, S. ; Schmiedeke, A. ; Smith, R. ; Sakai, T.</creator><creatorcontrib>Beuther, H. ; Linz, H. ; Tackenberg, J. ; Henning, Th ; Krause, O. ; Ragan, S. ; Nielbock, M. ; Launhardt, R. ; Bihr, S. ; Schmiedeke, A. ; Smith, R. ; Sakai, T.</creatorcontrib><description>Context. Because of their short evolutionary time-scales, the earliest stages of high-mass star formation prior to the existence of any embedded heating source have barely been characterized until today. Aims. We study the fragmentation and dynamical properties of a massive starless gas clump at the onset of high-mass star formation. Methods. Based on Herschel continuum data we identify a massive gas clump that remains far-infrared dark up to 100 μm wavelengths. The fragmentation and dynamical properties are investigated by means of Plateau de Bure Interferometer and Nobeyama 45 m single-dish spectral line and continuum observations. Results. The massive gas reservoir (between ~800 and ~1600 M⊙, depending on the assumed dust properties) fragments at spatial scales of ~18 000 AU in four cores. Comparing the spatial extent of this high-mass region with intermediate- to low-mass starless cores from the literature, we find that linear sizes do not vary significantly over the whole mass regime. However, the high-mass regions squeeze much more gas into these similar volumes and hence have orders of magnitude larger densities. The fragmentation properties of the presented low-to high-mass regions are consistent with gravitational instable Jeans fragmentation. Furthermore, we find multiple velocity components associated with the resolved cores. Recent radiative transfer hydrodynamic simulations of the dynamic collapse of massive gas clumps also result in multiple velocity components along the line of sight because of the clumpy structure of the regions. This result is supported by a ratio between viral and total gas mass for the whole region &lt;1. Conclusions. This apparently still starless high-mass gas clump exhibits clear signatures of early fragmentation and dynamic collapse prior to the formation of an embedded heating source. A comparison with regions of lower mass reveals that the linear size of star-forming regions does not necessarily have to vary much for different masses, however, the mass reservoirs and gas densities are orders of magnitude enhanced for high-mass regions compared to their lower-mass siblings.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201220475</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Astronomy ; Clumps ; Collapse ; Continuums ; Fragmentation ; Gas density ; Heating ; ISM: clouds ; ISM: kinematics and dynamics ; Star formation ; stars: early-type ; stars: formation ; stars: individual: IRDC18310-4 ; stars: massive</subject><ispartof>Astronomy and astrophysics (Berlin), 2013-05, Vol.553, p.1-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-ee975ca95f06b1b8c20763e853a08855f66965f85368e14288a396865df194fe3</citedby><cites>FETCH-LOGICAL-c464t-ee975ca95f06b1b8c20763e853a08855f66965f85368e14288a396865df194fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Beuther, H.</creatorcontrib><creatorcontrib>Linz, H.</creatorcontrib><creatorcontrib>Tackenberg, J.</creatorcontrib><creatorcontrib>Henning, Th</creatorcontrib><creatorcontrib>Krause, O.</creatorcontrib><creatorcontrib>Ragan, S.</creatorcontrib><creatorcontrib>Nielbock, M.</creatorcontrib><creatorcontrib>Launhardt, R.</creatorcontrib><creatorcontrib>Bihr, S.</creatorcontrib><creatorcontrib>Schmiedeke, A.</creatorcontrib><creatorcontrib>Smith, R.</creatorcontrib><creatorcontrib>Sakai, T.</creatorcontrib><title>Fragmentation and dynamical collapse of the starless high-mass star-forming region IRDC 18310-4</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Because of their short evolutionary time-scales, the earliest stages of high-mass star formation prior to the existence of any embedded heating source have barely been characterized until today. Aims. We study the fragmentation and dynamical properties of a massive starless gas clump at the onset of high-mass star formation. Methods. Based on Herschel continuum data we identify a massive gas clump that remains far-infrared dark up to 100 μm wavelengths. The fragmentation and dynamical properties are investigated by means of Plateau de Bure Interferometer and Nobeyama 45 m single-dish spectral line and continuum observations. Results. The massive gas reservoir (between ~800 and ~1600 M⊙, depending on the assumed dust properties) fragments at spatial scales of ~18 000 AU in four cores. Comparing the spatial extent of this high-mass region with intermediate- to low-mass starless cores from the literature, we find that linear sizes do not vary significantly over the whole mass regime. However, the high-mass regions squeeze much more gas into these similar volumes and hence have orders of magnitude larger densities. The fragmentation properties of the presented low-to high-mass regions are consistent with gravitational instable Jeans fragmentation. Furthermore, we find multiple velocity components associated with the resolved cores. Recent radiative transfer hydrodynamic simulations of the dynamic collapse of massive gas clumps also result in multiple velocity components along the line of sight because of the clumpy structure of the regions. This result is supported by a ratio between viral and total gas mass for the whole region &lt;1. Conclusions. This apparently still starless high-mass gas clump exhibits clear signatures of early fragmentation and dynamic collapse prior to the formation of an embedded heating source. A comparison with regions of lower mass reveals that the linear size of star-forming regions does not necessarily have to vary much for different masses, however, the mass reservoirs and gas densities are orders of magnitude enhanced for high-mass regions compared to their lower-mass siblings.</description><subject>Astronomy</subject><subject>Clumps</subject><subject>Collapse</subject><subject>Continuums</subject><subject>Fragmentation</subject><subject>Gas density</subject><subject>Heating</subject><subject>ISM: clouds</subject><subject>ISM: kinematics and dynamics</subject><subject>Star formation</subject><subject>stars: early-type</subject><subject>stars: formation</subject><subject>stars: individual: IRDC18310-4</subject><subject>stars: massive</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LAzEQDaJgrf4CLzl6ic13sketthYrQlF6DOk2aVf3oyZbsDev_k1_iVkqPQsDM2947zHzALgk-JpgQQYYY44kk2RAMaEUcyWOQI9wRhFWXB6D3oFxCs5ifEuQEs16wI6CXVWubm1bNDW09RIud7WtityWMG_K0m6ig42H7drB2NpQuhjhulitUWXT1K2Qb0JV1CsY3Kozmczuhj9f38mfYMTPwYm3ZXQXf70PXkf3L8MHNH0eT4Y3U5RzyVvkXKZEbjPhsVyQhc4pVpI5LZjFWgvhpcyk8AlL7QinWluWSS3F0pOMe8f64GrvuwnNx9bF1lRFzF36oHbNNhoiFREKc87_QSWpqEoH9AHbU_PQxBicN5tQVDbsDMGmy950yZouWXPIPqnQXlXE1n0eJDa8G6mYEkbjuSF0fjufPT6ZMfsFgvOEIA</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Beuther, H.</creator><creator>Linz, H.</creator><creator>Tackenberg, J.</creator><creator>Henning, Th</creator><creator>Krause, O.</creator><creator>Ragan, S.</creator><creator>Nielbock, M.</creator><creator>Launhardt, R.</creator><creator>Bihr, S.</creator><creator>Schmiedeke, A.</creator><creator>Smith, R.</creator><creator>Sakai, T.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Fragmentation and dynamical collapse of the starless high-mass star-forming region IRDC 18310-4</title><author>Beuther, H. ; Linz, H. ; Tackenberg, J. ; Henning, Th ; Krause, O. ; Ragan, S. ; Nielbock, M. ; Launhardt, R. ; Bihr, S. ; Schmiedeke, A. ; Smith, R. ; Sakai, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-ee975ca95f06b1b8c20763e853a08855f66965f85368e14288a396865df194fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Astronomy</topic><topic>Clumps</topic><topic>Collapse</topic><topic>Continuums</topic><topic>Fragmentation</topic><topic>Gas density</topic><topic>Heating</topic><topic>ISM: clouds</topic><topic>ISM: kinematics and dynamics</topic><topic>Star formation</topic><topic>stars: early-type</topic><topic>stars: formation</topic><topic>stars: individual: IRDC18310-4</topic><topic>stars: massive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beuther, H.</creatorcontrib><creatorcontrib>Linz, H.</creatorcontrib><creatorcontrib>Tackenberg, J.</creatorcontrib><creatorcontrib>Henning, Th</creatorcontrib><creatorcontrib>Krause, O.</creatorcontrib><creatorcontrib>Ragan, S.</creatorcontrib><creatorcontrib>Nielbock, M.</creatorcontrib><creatorcontrib>Launhardt, R.</creatorcontrib><creatorcontrib>Bihr, S.</creatorcontrib><creatorcontrib>Schmiedeke, A.</creatorcontrib><creatorcontrib>Smith, R.</creatorcontrib><creatorcontrib>Sakai, T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beuther, H.</au><au>Linz, H.</au><au>Tackenberg, J.</au><au>Henning, Th</au><au>Krause, O.</au><au>Ragan, S.</au><au>Nielbock, M.</au><au>Launhardt, R.</au><au>Bihr, S.</au><au>Schmiedeke, A.</au><au>Smith, R.</au><au>Sakai, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fragmentation and dynamical collapse of the starless high-mass star-forming region IRDC 18310-4</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>553</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><notes>dkey:10.1051/0004-6361/201220475</notes><notes>e-mail: name@mpia.de</notes><notes>publisher-ID:aa20475-12</notes><notes>ark:/67375/80W-12WBWRKM-G</notes><notes>istex:11F7F36C3AFCEE5DBBD942F2D3D42CEDEDD668F4</notes><notes>Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).</notes><notes>bibcode:2013A%26A...553A.115B</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Context. Because of their short evolutionary time-scales, the earliest stages of high-mass star formation prior to the existence of any embedded heating source have barely been characterized until today. Aims. We study the fragmentation and dynamical properties of a massive starless gas clump at the onset of high-mass star formation. Methods. Based on Herschel continuum data we identify a massive gas clump that remains far-infrared dark up to 100 μm wavelengths. The fragmentation and dynamical properties are investigated by means of Plateau de Bure Interferometer and Nobeyama 45 m single-dish spectral line and continuum observations. Results. The massive gas reservoir (between ~800 and ~1600 M⊙, depending on the assumed dust properties) fragments at spatial scales of ~18 000 AU in four cores. Comparing the spatial extent of this high-mass region with intermediate- to low-mass starless cores from the literature, we find that linear sizes do not vary significantly over the whole mass regime. However, the high-mass regions squeeze much more gas into these similar volumes and hence have orders of magnitude larger densities. The fragmentation properties of the presented low-to high-mass regions are consistent with gravitational instable Jeans fragmentation. Furthermore, we find multiple velocity components associated with the resolved cores. Recent radiative transfer hydrodynamic simulations of the dynamic collapse of massive gas clumps also result in multiple velocity components along the line of sight because of the clumpy structure of the regions. This result is supported by a ratio between viral and total gas mass for the whole region &lt;1. Conclusions. This apparently still starless high-mass gas clump exhibits clear signatures of early fragmentation and dynamic collapse prior to the formation of an embedded heating source. A comparison with regions of lower mass reveals that the linear size of star-forming regions does not necessarily have to vary much for different masses, however, the mass reservoirs and gas densities are orders of magnitude enhanced for high-mass regions compared to their lower-mass siblings.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201220475</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2013-05, Vol.553, p.1-11
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_miscellaneous_1671570444
source EZB Electronic Journals Library
subjects Astronomy
Clumps
Collapse
Continuums
Fragmentation
Gas density
Heating
ISM: clouds
ISM: kinematics and dynamics
Star formation
stars: early-type
stars: formation
stars: individual: IRDC18310-4
stars: massive
title Fragmentation and dynamical collapse of the starless high-mass star-forming region IRDC 18310-4
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T17%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fragmentation%20and%20dynamical%20collapse%20of%20the%20starless%20high-mass%20star-forming%20region%20IRDC%E2%80%8918310-4&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Beuther,%20H.&rft.date=2013-05-01&rft.volume=553&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201220475&rft_dat=%3Cproquest_cross%3E1611612776%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-ee975ca95f06b1b8c20763e853a08855f66965f85368e14288a396865df194fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1611612776&rft_id=info:pmid/&rfr_iscdi=true