Loading…

Micro-Raman study on water distribution inside a Nafion membrane during operation of polymer electrolyte fuel cell

In situ confocal micro-Raman spectroscopy was used to probe the water distribution in an electrolyte membrane in a polymer electrolyte fuel cell (PEFC) under various cell-operating conditions. The water content, λR (number of water molecules per sulfonic acid group), in a Nafion® membrane was calcul...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2012-11, Vol.82, p.277-283
Main Authors: Hara, Masanori, Inukai, Junji, Bae, Byungchan, Hoshi, Takayuki, Miyatake, Kenji, Uchida, Makoto, Uchida, Hiroyuki, Watanabe, Masahiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-f40038bcf63c44cb77079087b8be5318cf393b7142b696ca9e595cfc8e6b37673
cites cdi_FETCH-LOGICAL-c510t-f40038bcf63c44cb77079087b8be5318cf393b7142b696ca9e595cfc8e6b37673
container_end_page 283
container_issue
container_start_page 277
container_title Electrochimica acta
container_volume 82
creator Hara, Masanori
Inukai, Junji
Bae, Byungchan
Hoshi, Takayuki
Miyatake, Kenji
Uchida, Makoto
Uchida, Hiroyuki
Watanabe, Masahiro
description In situ confocal micro-Raman spectroscopy was used to probe the water distribution in an electrolyte membrane in a polymer electrolyte fuel cell (PEFC) under various cell-operating conditions. The water content, λR (number of water molecules per sulfonic acid group), in a Nafion® membrane was calculated from the intensity of the OH stretching (ν(OH)) band. By analyzing the Raman spectra as a function of the membrane depth in an operating PEFC, the λR distributions in the membrane were obtained under different temperature, humidification, current density and gas-flow rate conditions. The ν(OH) intensity in the electrolyte membrane increased with increasing current density, relative humidity, and gas utilization. The water distribution in the electrolyte membrane can be understood as a balance among back-diffusing water produced from the cathode, electro-osmotic drag, and water removal via the gas diffusion layer (GDL), all of which is information that will be important for the realization of cell operation without humidification in future advanced fuel cell vehicles.
doi_str_mv 10.1016/j.electacta.2012.04.099
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671416082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346861200669X</els_id><sourcerecordid>1671416082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-f40038bcf63c44cb77079087b8be5318cf393b7142b696ca9e595cfc8e6b37673</originalsourceid><addsrcrecordid>eNqFUU1r3DAUNKGFbJP-hupS6MXuk_Vh6RhCmxbSBEJ7FpL8VLT4YyvZLfvvK2dDrgsC8cTMm9FMVX2g0FCg8vO-wQH9YstpWqBtA7wBrS-qHVUdq5kS-k21A6Cs5lLJy-pdznsA6GQHuyr9iD7N9ZMd7UTysvZHMk_kn10wkT7mJUW3LrE8xSnHHoklDzZs84ijS3ZC0q8pTr_JfMBkn5FzIId5OI5lw7OzVIYFSVhxIB6H4bp6G-yQ8f3LfVX9-vrl5-23-v7x7vvtzX3tBYWlDhyAKeeDZJ5z77oOOg2qc8qhYFT5wDRzHeWtk1p6q1Fo4YNXKB0rn2NX1afT3kOa_6yYFzPGvBkoruc1GyoLmUpQ7XmooIxLyqU-D2VS0LYVkhdod4KWhHNOGMwhxdGmo6Fgtu7M3rx2Z7buDHBTuivMjy8iNns7hBK0j_mV3kqpRCs2hZsTDkuOfyMmk33EyWMfU9lr-jme1foPHNe0Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365122564</pqid></control><display><type>article</type><title>Micro-Raman study on water distribution inside a Nafion membrane during operation of polymer electrolyte fuel cell</title><source>ScienceDirect Freedom Collection</source><creator>Hara, Masanori ; Inukai, Junji ; Bae, Byungchan ; Hoshi, Takayuki ; Miyatake, Kenji ; Uchida, Makoto ; Uchida, Hiroyuki ; Watanabe, Masahiro</creator><creatorcontrib>Hara, Masanori ; Inukai, Junji ; Bae, Byungchan ; Hoshi, Takayuki ; Miyatake, Kenji ; Uchida, Makoto ; Uchida, Hiroyuki ; Watanabe, Masahiro</creatorcontrib><description>In situ confocal micro-Raman spectroscopy was used to probe the water distribution in an electrolyte membrane in a polymer electrolyte fuel cell (PEFC) under various cell-operating conditions. The water content, λR (number of water molecules per sulfonic acid group), in a Nafion® membrane was calculated from the intensity of the OH stretching (ν(OH)) band. By analyzing the Raman spectra as a function of the membrane depth in an operating PEFC, the λR distributions in the membrane were obtained under different temperature, humidification, current density and gas-flow rate conditions. The ν(OH) intensity in the electrolyte membrane increased with increasing current density, relative humidity, and gas utilization. The water distribution in the electrolyte membrane can be understood as a balance among back-diffusing water produced from the cathode, electro-osmotic drag, and water removal via the gas diffusion layer (GDL), all of which is information that will be important for the realization of cell operation without humidification in future advanced fuel cell vehicles.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2012.04.099</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Chemistry ; Current density ; Drag ; Electrochemistry ; Electrolytes ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cell vehicle ; Fuel cells ; General and physical chemistry ; Humidification ; Infrared radiation ; MEA ; Membranes ; Micro-Raman spectroscopy ; Nafion ; Water distribution ; Water engineering</subject><ispartof>Electrochimica acta, 2012-11, Vol.82, p.277-283</ispartof><rights>2012</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-f40038bcf63c44cb77079087b8be5318cf393b7142b696ca9e595cfc8e6b37673</citedby><cites>FETCH-LOGICAL-c510t-f40038bcf63c44cb77079087b8be5318cf393b7142b696ca9e595cfc8e6b37673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>310,311,315,786,790,795,796,23958,23959,25170,27957,27958</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26685254$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hara, Masanori</creatorcontrib><creatorcontrib>Inukai, Junji</creatorcontrib><creatorcontrib>Bae, Byungchan</creatorcontrib><creatorcontrib>Hoshi, Takayuki</creatorcontrib><creatorcontrib>Miyatake, Kenji</creatorcontrib><creatorcontrib>Uchida, Makoto</creatorcontrib><creatorcontrib>Uchida, Hiroyuki</creatorcontrib><creatorcontrib>Watanabe, Masahiro</creatorcontrib><title>Micro-Raman study on water distribution inside a Nafion membrane during operation of polymer electrolyte fuel cell</title><title>Electrochimica acta</title><description>In situ confocal micro-Raman spectroscopy was used to probe the water distribution in an electrolyte membrane in a polymer electrolyte fuel cell (PEFC) under various cell-operating conditions. The water content, λR (number of water molecules per sulfonic acid group), in a Nafion® membrane was calculated from the intensity of the OH stretching (ν(OH)) band. By analyzing the Raman spectra as a function of the membrane depth in an operating PEFC, the λR distributions in the membrane were obtained under different temperature, humidification, current density and gas-flow rate conditions. The ν(OH) intensity in the electrolyte membrane increased with increasing current density, relative humidity, and gas utilization. The water distribution in the electrolyte membrane can be understood as a balance among back-diffusing water produced from the cathode, electro-osmotic drag, and water removal via the gas diffusion layer (GDL), all of which is information that will be important for the realization of cell operation without humidification in future advanced fuel cell vehicles.</description><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Current density</subject><subject>Drag</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cell vehicle</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Humidification</subject><subject>Infrared radiation</subject><subject>MEA</subject><subject>Membranes</subject><subject>Micro-Raman spectroscopy</subject><subject>Nafion</subject><subject>Water distribution</subject><subject>Water engineering</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFUU1r3DAUNKGFbJP-hupS6MXuk_Vh6RhCmxbSBEJ7FpL8VLT4YyvZLfvvK2dDrgsC8cTMm9FMVX2g0FCg8vO-wQH9YstpWqBtA7wBrS-qHVUdq5kS-k21A6Cs5lLJy-pdznsA6GQHuyr9iD7N9ZMd7UTysvZHMk_kn10wkT7mJUW3LrE8xSnHHoklDzZs84ijS3ZC0q8pTr_JfMBkn5FzIId5OI5lw7OzVIYFSVhxIB6H4bp6G-yQ8f3LfVX9-vrl5-23-v7x7vvtzX3tBYWlDhyAKeeDZJ5z77oOOg2qc8qhYFT5wDRzHeWtk1p6q1Fo4YNXKB0rn2NX1afT3kOa_6yYFzPGvBkoruc1GyoLmUpQ7XmooIxLyqU-D2VS0LYVkhdod4KWhHNOGMwhxdGmo6Fgtu7M3rx2Z7buDHBTuivMjy8iNns7hBK0j_mV3kqpRCs2hZsTDkuOfyMmk33EyWMfU9lr-jme1foPHNe0Tw</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Hara, Masanori</creator><creator>Inukai, Junji</creator><creator>Bae, Byungchan</creator><creator>Hoshi, Takayuki</creator><creator>Miyatake, Kenji</creator><creator>Uchida, Makoto</creator><creator>Uchida, Hiroyuki</creator><creator>Watanabe, Masahiro</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20121101</creationdate><title>Micro-Raman study on water distribution inside a Nafion membrane during operation of polymer electrolyte fuel cell</title><author>Hara, Masanori ; Inukai, Junji ; Bae, Byungchan ; Hoshi, Takayuki ; Miyatake, Kenji ; Uchida, Makoto ; Uchida, Hiroyuki ; Watanabe, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-f40038bcf63c44cb77079087b8be5318cf393b7142b696ca9e595cfc8e6b37673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Current density</topic><topic>Drag</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cell vehicle</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Humidification</topic><topic>Infrared radiation</topic><topic>MEA</topic><topic>Membranes</topic><topic>Micro-Raman spectroscopy</topic><topic>Nafion</topic><topic>Water distribution</topic><topic>Water engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hara, Masanori</creatorcontrib><creatorcontrib>Inukai, Junji</creatorcontrib><creatorcontrib>Bae, Byungchan</creatorcontrib><creatorcontrib>Hoshi, Takayuki</creatorcontrib><creatorcontrib>Miyatake, Kenji</creatorcontrib><creatorcontrib>Uchida, Makoto</creatorcontrib><creatorcontrib>Uchida, Hiroyuki</creatorcontrib><creatorcontrib>Watanabe, Masahiro</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hara, Masanori</au><au>Inukai, Junji</au><au>Bae, Byungchan</au><au>Hoshi, Takayuki</au><au>Miyatake, Kenji</au><au>Uchida, Makoto</au><au>Uchida, Hiroyuki</au><au>Watanabe, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro-Raman study on water distribution inside a Nafion membrane during operation of polymer electrolyte fuel cell</atitle><jtitle>Electrochimica acta</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>82</volume><spage>277</spage><epage>283</epage><pages>277-283</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><notes>ObjectType-Article-1</notes><notes>ObjectType-Feature-2</notes><abstract>In situ confocal micro-Raman spectroscopy was used to probe the water distribution in an electrolyte membrane in a polymer electrolyte fuel cell (PEFC) under various cell-operating conditions. The water content, λR (number of water molecules per sulfonic acid group), in a Nafion® membrane was calculated from the intensity of the OH stretching (ν(OH)) band. By analyzing the Raman spectra as a function of the membrane depth in an operating PEFC, the λR distributions in the membrane were obtained under different temperature, humidification, current density and gas-flow rate conditions. The ν(OH) intensity in the electrolyte membrane increased with increasing current density, relative humidity, and gas utilization. The water distribution in the electrolyte membrane can be understood as a balance among back-diffusing water produced from the cathode, electro-osmotic drag, and water removal via the gas diffusion layer (GDL), all of which is information that will be important for the realization of cell operation without humidification in future advanced fuel cell vehicles.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2012.04.099</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2012-11, Vol.82, p.277-283
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_1671416082
source ScienceDirect Freedom Collection
subjects Applied sciences
Chemistry
Current density
Drag
Electrochemistry
Electrolytes
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cell vehicle
Fuel cells
General and physical chemistry
Humidification
Infrared radiation
MEA
Membranes
Micro-Raman spectroscopy
Nafion
Water distribution
Water engineering
title Micro-Raman study on water distribution inside a Nafion membrane during operation of polymer electrolyte fuel cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T02%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro-Raman%20study%20on%20water%20distribution%20inside%20a%20Nafion%20membrane%20during%20operation%20of%20polymer%20electrolyte%20fuel%20cell&rft.jtitle=Electrochimica%20acta&rft.au=Hara,%20Masanori&rft.date=2012-11-01&rft.volume=82&rft.spage=277&rft.epage=283&rft.pages=277-283&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2012.04.099&rft_dat=%3Cproquest_cross%3E1671416082%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-f40038bcf63c44cb77079087b8be5318cf393b7142b696ca9e595cfc8e6b37673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365122564&rft_id=info:pmid/&rfr_iscdi=true