Loading…

origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum

The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum...

Full description

Saved in:
Bibliographic Details
Published in:Photosynthesis research 2015-01, Vol.123 (1), p.23-31
Main Authors: Löhner, Alexander, Carey, Anne-Marie, Hacking, Kirsty, Picken, Nichola, Kelly, Sharon, Cogdell, Richard, Köhler, Jürgen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c599t-6f67410a509b524aed20a529c9b4027f5c5d898340d3234eef6c2495f3d05eba3
cites cdi_FETCH-LOGICAL-c599t-6f67410a509b524aed20a529c9b4027f5c5d898340d3234eef6c2495f3d05eba3
container_end_page 31
container_issue 1
container_start_page 23
container_title Photosynthesis research
container_volume 123
creator Löhner, Alexander
Carey, Anne-Marie
Hacking, Kirsty
Picken, Nichola
Kelly, Sharon
Cogdell, Richard
Köhler, Jürgen
description The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment–protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below.
doi_str_mv 10.1007/s11120-014-0036-2
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1654679554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A407528171</galeid><sourcerecordid>A407528171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-6f67410a509b524aed20a529c9b4027f5c5d898340d3234eef6c2495f3d05eba3</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhSMEopfCA7ABS2xgkTL-j5eXCmilKyFRumBlOYmduiRxaieovD2OUhBlgZAXY3u-czSjUxTPMZxgAPk2YYwJlIBZCUBFSR4UO8wlLTlI9bDYARairLjiR8WTlK4BoBKYPi6OCMccOBe74muIvvMjCg7NVxalqfczelcBIFOnEKfZhxFN1nxDGVqJwxlBTRim3t7ahFwMA9r3fWiu8s3MfhnQdz-GtAxPi0fO9Mk-u6vHxeWH919Oz8rDp4_np_tD2XCl5lI4IRkGw0HVnDBjW5IfRDWqZkCk4w1vK1VRBi0llFnrREOY4o62wG1t6HHxevOdYrhZbJr14FNj-96MNixJY8GZkIpz9h8oVUxJrEhGX_2FXocljnmRlaqYJEBXw5ON6kxvtR9dmKNp8mnt4JswWufz_56B5KTCEmfBm3uCzMz2du7MkpI-v_h8n8Ub28SQUrROT9EPJv7QGPSav97y1zl_veav17Ff3I291INtfyt-BZ4BsgEpt8bOxj_2-ofry03kTNCmiz7pywsC2RIIkEpS-hPnVr-x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638472034</pqid></control><display><type>article</type><title>origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Löhner, Alexander ; Carey, Anne-Marie ; Hacking, Kirsty ; Picken, Nichola ; Kelly, Sharon ; Cogdell, Richard ; Köhler, Jürgen</creator><creatorcontrib>Löhner, Alexander ; Carey, Anne-Marie ; Hacking, Kirsty ; Picken, Nichola ; Kelly, Sharon ; Cogdell, Richard ; Köhler, Jürgen</creatorcontrib><description>The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment–protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-014-0036-2</identifier><identifier>PMID: 25150556</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>absorption ; Allochromatium vinosum ; bacteria ; Biochemistry ; Biomedical and Life Sciences ; Circular Dichroism ; circular dichroism spectroscopy ; Gammaproteobacteria - physiology ; Life Sciences ; Light-Harvesting Protein Complexes - physiology ; luteinizing hormone ; Models, Biological ; Monte Carlo Method ; Phaeospirillum molischianum ; Photosynthesis ; Pigments ; Pigments, Biological - physiology ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Protein Conformation ; Proteins ; Regular Paper ; Rhodopseudomonas acidophila ; Rhodospirillum molischianum ; Spectrophotometry, Atomic ; Spectrum analysis ; X-radiation</subject><ispartof>Photosynthesis research, 2015-01, Vol.123 (1), p.23-31</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer Science+Business Media Dordrecht 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-6f67410a509b524aed20a529c9b4027f5c5d898340d3234eef6c2495f3d05eba3</citedby><cites>FETCH-LOGICAL-c599t-6f67410a509b524aed20a529c9b4027f5c5d898340d3234eef6c2495f3d05eba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25150556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Löhner, Alexander</creatorcontrib><creatorcontrib>Carey, Anne-Marie</creatorcontrib><creatorcontrib>Hacking, Kirsty</creatorcontrib><creatorcontrib>Picken, Nichola</creatorcontrib><creatorcontrib>Kelly, Sharon</creatorcontrib><creatorcontrib>Cogdell, Richard</creatorcontrib><creatorcontrib>Köhler, Jürgen</creatorcontrib><title>origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><addtitle>Photosynth Res</addtitle><description>The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment–protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below.</description><subject>absorption</subject><subject>Allochromatium vinosum</subject><subject>bacteria</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Circular Dichroism</subject><subject>circular dichroism spectroscopy</subject><subject>Gammaproteobacteria - physiology</subject><subject>Life Sciences</subject><subject>Light-Harvesting Protein Complexes - physiology</subject><subject>luteinizing hormone</subject><subject>Models, Biological</subject><subject>Monte Carlo Method</subject><subject>Phaeospirillum molischianum</subject><subject>Photosynthesis</subject><subject>Pigments</subject><subject>Pigments, Biological - physiology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Regular Paper</subject><subject>Rhodopseudomonas acidophila</subject><subject>Rhodospirillum molischianum</subject><subject>Spectrophotometry, Atomic</subject><subject>Spectrum analysis</subject><subject>X-radiation</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1TAQhSMEopfCA7ABS2xgkTL-j5eXCmilKyFRumBlOYmduiRxaieovD2OUhBlgZAXY3u-czSjUxTPMZxgAPk2YYwJlIBZCUBFSR4UO8wlLTlI9bDYARairLjiR8WTlK4BoBKYPi6OCMccOBe74muIvvMjCg7NVxalqfczelcBIFOnEKfZhxFN1nxDGVqJwxlBTRim3t7ahFwMA9r3fWiu8s3MfhnQdz-GtAxPi0fO9Mk-u6vHxeWH919Oz8rDp4_np_tD2XCl5lI4IRkGw0HVnDBjW5IfRDWqZkCk4w1vK1VRBi0llFnrREOY4o62wG1t6HHxevOdYrhZbJr14FNj-96MNixJY8GZkIpz9h8oVUxJrEhGX_2FXocljnmRlaqYJEBXw5ON6kxvtR9dmKNp8mnt4JswWufz_56B5KTCEmfBm3uCzMz2du7MkpI-v_h8n8Ub28SQUrROT9EPJv7QGPSav97y1zl_veav17Ff3I291INtfyt-BZ4BsgEpt8bOxj_2-ofry03kTNCmiz7pywsC2RIIkEpS-hPnVr-x</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Löhner, Alexander</creator><creator>Carey, Anne-Marie</creator><creator>Hacking, Kirsty</creator><creator>Picken, Nichola</creator><creator>Kelly, Sharon</creator><creator>Cogdell, Richard</creator><creator>Köhler, Jürgen</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20150101</creationdate><title>origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum</title><author>Löhner, Alexander ; Carey, Anne-Marie ; Hacking, Kirsty ; Picken, Nichola ; Kelly, Sharon ; Cogdell, Richard ; Köhler, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-6f67410a509b524aed20a529c9b4027f5c5d898340d3234eef6c2495f3d05eba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>absorption</topic><topic>Allochromatium vinosum</topic><topic>bacteria</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Circular Dichroism</topic><topic>circular dichroism spectroscopy</topic><topic>Gammaproteobacteria - physiology</topic><topic>Life Sciences</topic><topic>Light-Harvesting Protein Complexes - physiology</topic><topic>luteinizing hormone</topic><topic>Models, Biological</topic><topic>Monte Carlo Method</topic><topic>Phaeospirillum molischianum</topic><topic>Photosynthesis</topic><topic>Pigments</topic><topic>Pigments, Biological - physiology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Regular Paper</topic><topic>Rhodopseudomonas acidophila</topic><topic>Rhodospirillum molischianum</topic><topic>Spectrophotometry, Atomic</topic><topic>Spectrum analysis</topic><topic>X-radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Löhner, Alexander</creatorcontrib><creatorcontrib>Carey, Anne-Marie</creatorcontrib><creatorcontrib>Hacking, Kirsty</creatorcontrib><creatorcontrib>Picken, Nichola</creatorcontrib><creatorcontrib>Kelly, Sharon</creatorcontrib><creatorcontrib>Cogdell, Richard</creatorcontrib><creatorcontrib>Köhler, Jürgen</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Löhner, Alexander</au><au>Carey, Anne-Marie</au><au>Hacking, Kirsty</au><au>Picken, Nichola</au><au>Kelly, Sharon</au><au>Cogdell, Richard</au><au>Köhler, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><addtitle>Photosynth Res</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>123</volume><issue>1</issue><spage>23</spage><epage>31</epage><pages>23-31</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><notes>http://dx.doi.org/10.1007/s11120-014-0036-2</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment–protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><pmid>25150556</pmid><doi>10.1007/s11120-014-0036-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-8595
ispartof Photosynthesis research, 2015-01, Vol.123 (1), p.23-31
issn 0166-8595
1573-5079
language eng
recordid cdi_proquest_miscellaneous_1654679554
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects absorption
Allochromatium vinosum
bacteria
Biochemistry
Biomedical and Life Sciences
Circular Dichroism
circular dichroism spectroscopy
Gammaproteobacteria - physiology
Life Sciences
Light-Harvesting Protein Complexes - physiology
luteinizing hormone
Models, Biological
Monte Carlo Method
Phaeospirillum molischianum
Photosynthesis
Pigments
Pigments, Biological - physiology
Plant Genetics and Genomics
Plant Physiology
Plant Sciences
Protein Conformation
Proteins
Regular Paper
Rhodopseudomonas acidophila
Rhodospirillum molischianum
Spectrophotometry, Atomic
Spectrum analysis
X-radiation
title origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T07%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=origin%20of%20the%20split%20B800%20absorption%20peak%20in%20the%20LH2%20complexes%20from%20Allochromatium%20vinosum&rft.jtitle=Photosynthesis%20research&rft.au=L%C3%B6hner,%20Alexander&rft.date=2015-01-01&rft.volume=123&rft.issue=1&rft.spage=23&rft.epage=31&rft.pages=23-31&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-014-0036-2&rft_dat=%3Cgale_proqu%3EA407528171%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c599t-6f67410a509b524aed20a529c9b4027f5c5d898340d3234eef6c2495f3d05eba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1638472034&rft_id=info:pmid/25150556&rft_galeid=A407528171&rfr_iscdi=true