Loading…

The Rogers–Ramanujan–Gordon theorem for overpartitions

Let Bk, i(n) be the number of partitions of n with certain difference condition and let Ak, i(n) be the number of partitions of n with certain congruence condition. The Rogers–Ramanujan–Gordon theorem states that Bk, i(n)=Ak, i(n). Lovejoy obtained an overpartition analogue of the Rogers–Ramanujan–G...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the London Mathematical Society 2013-06, Vol.106 (6), p.1371-1393
Main Authors: Chen, William Y. C., Sang, Doris D. M., Shi, Diane Y. H.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3451-a031a71e876b281a79eda77e17d0c0952f51f04ebdfbd7029c93b5e51fdd3e453
cites
container_end_page 1393
container_issue 6
container_start_page 1371
container_title Proceedings of the London Mathematical Society
container_volume 106
creator Chen, William Y. C.
Sang, Doris D. M.
Shi, Diane Y. H.
description Let Bk, i(n) be the number of partitions of n with certain difference condition and let Ak, i(n) be the number of partitions of n with certain congruence condition. The Rogers–Ramanujan–Gordon theorem states that Bk, i(n)=Ak, i(n). Lovejoy obtained an overpartition analogue of the Rogers–Ramanujan–Gordon theorem for the cases i=1 and i=k. We find an overpartition analogue of the Rogers–Ramanujan–Gordon theorem in the general case. Let Dk, i(n) be the number of overpartitions of n satisfying certain difference condition and Ck, i(n) be the number of overpartitions of n whose non‐overlined parts satisfy certain congruence condition. We show that Ck, i(n)=Dk, i(n). By using a function introduced by Andrews, we obtain a recurrence relation that implies that the generating function of Dk, i(n) equals the generating function of Ck, i(n). By introducing the Gordon marking of an overpartition, we find a generating function formula for Dk, i(n) that can be considered an overpartition analogue of an identity of Andrews for ordinary partitions.
doi_str_mv 10.1112/plms/pds056
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559711600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559711600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3451-a031a71e876b281a79eda77e17d0c0952f51f04ebdfbd7029c93b5e51fdd3e453</originalsourceid><addsrcrecordid>eNp9kMFKw0AURQdRsFZX_kCWgsS-l8lkGnciWoWKUiu4GyaZF5uSZOJMqnTnP_iHfokpce3qXi6HuziMnSJcIGI0aavaT1rjQSR7bIRxAmEUx6_7bAQQxWGCKA7ZkfdrAEg4FyN2uVxRsLBv5PzP1_dC17rZrHXT95l1xjZBtyLrqA4K6wL7Qa7Vriu70jb-mB0UuvJ08pdj9nJ7s7y-C-ePs_vrq3mY81hgqIGjlkhTmWTRtK8pGS0loTSQQyqiQmABMWWmyIyEKM1TngnqR2M4xYKP2dnw2zr7viHfqbr0OVWVbshuvEIhUomYAPTo-YDmznrvqFCtK2vttgpB7QypnSE1GOppHOjPsqLtf6h6mj88I5fIfwFbLG01</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559711600</pqid></control><display><type>article</type><title>The Rogers–Ramanujan–Gordon theorem for overpartitions</title><source>Wiley Online Library</source><creator>Chen, William Y. C. ; Sang, Doris D. M. ; Shi, Diane Y. H.</creator><creatorcontrib>Chen, William Y. C. ; Sang, Doris D. M. ; Shi, Diane Y. H.</creatorcontrib><description>Let Bk, i(n) be the number of partitions of n with certain difference condition and let Ak, i(n) be the number of partitions of n with certain congruence condition. The Rogers–Ramanujan–Gordon theorem states that Bk, i(n)=Ak, i(n). Lovejoy obtained an overpartition analogue of the Rogers–Ramanujan–Gordon theorem for the cases i=1 and i=k. We find an overpartition analogue of the Rogers–Ramanujan–Gordon theorem in the general case. Let Dk, i(n) be the number of overpartitions of n satisfying certain difference condition and Ck, i(n) be the number of overpartitions of n whose non‐overlined parts satisfy certain congruence condition. We show that Ck, i(n)=Dk, i(n). By using a function introduced by Andrews, we obtain a recurrence relation that implies that the generating function of Dk, i(n) equals the generating function of Ck, i(n). By introducing the Gordon marking of an overpartition, we find a generating function formula for Dk, i(n) that can be considered an overpartition analogue of an identity of Andrews for ordinary partitions.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms/pds056</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Analogue ; Congruences ; Functions (mathematics) ; Mathematical analysis ; Partitions ; Theorems</subject><ispartof>Proceedings of the London Mathematical Society, 2013-06, Vol.106 (6), p.1371-1393</ispartof><rights>2013 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3451-a031a71e876b281a79eda77e17d0c0952f51f04ebdfbd7029c93b5e51fdd3e453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms%2Fpds056$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms%2Fpds056$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids></links><search><creatorcontrib>Chen, William Y. C.</creatorcontrib><creatorcontrib>Sang, Doris D. M.</creatorcontrib><creatorcontrib>Shi, Diane Y. H.</creatorcontrib><title>The Rogers–Ramanujan–Gordon theorem for overpartitions</title><title>Proceedings of the London Mathematical Society</title><description>Let Bk, i(n) be the number of partitions of n with certain difference condition and let Ak, i(n) be the number of partitions of n with certain congruence condition. The Rogers–Ramanujan–Gordon theorem states that Bk, i(n)=Ak, i(n). Lovejoy obtained an overpartition analogue of the Rogers–Ramanujan–Gordon theorem for the cases i=1 and i=k. We find an overpartition analogue of the Rogers–Ramanujan–Gordon theorem in the general case. Let Dk, i(n) be the number of overpartitions of n satisfying certain difference condition and Ck, i(n) be the number of overpartitions of n whose non‐overlined parts satisfy certain congruence condition. We show that Ck, i(n)=Dk, i(n). By using a function introduced by Andrews, we obtain a recurrence relation that implies that the generating function of Dk, i(n) equals the generating function of Ck, i(n). By introducing the Gordon marking of an overpartition, we find a generating function formula for Dk, i(n) that can be considered an overpartition analogue of an identity of Andrews for ordinary partitions.</description><subject>Analogue</subject><subject>Congruences</subject><subject>Functions (mathematics)</subject><subject>Mathematical analysis</subject><subject>Partitions</subject><subject>Theorems</subject><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AURQdRsFZX_kCWgsS-l8lkGnciWoWKUiu4GyaZF5uSZOJMqnTnP_iHfokpce3qXi6HuziMnSJcIGI0aavaT1rjQSR7bIRxAmEUx6_7bAQQxWGCKA7ZkfdrAEg4FyN2uVxRsLBv5PzP1_dC17rZrHXT95l1xjZBtyLrqA4K6wL7Qa7Vriu70jb-mB0UuvJ08pdj9nJ7s7y-C-ePs_vrq3mY81hgqIGjlkhTmWTRtK8pGS0loTSQQyqiQmABMWWmyIyEKM1TngnqR2M4xYKP2dnw2zr7viHfqbr0OVWVbshuvEIhUomYAPTo-YDmznrvqFCtK2vttgpB7QypnSE1GOppHOjPsqLtf6h6mj88I5fIfwFbLG01</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Chen, William Y. C.</creator><creator>Sang, Doris D. M.</creator><creator>Shi, Diane Y. H.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201306</creationdate><title>The Rogers–Ramanujan–Gordon theorem for overpartitions</title><author>Chen, William Y. C. ; Sang, Doris D. M. ; Shi, Diane Y. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3451-a031a71e876b281a79eda77e17d0c0952f51f04ebdfbd7029c93b5e51fdd3e453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analogue</topic><topic>Congruences</topic><topic>Functions (mathematics)</topic><topic>Mathematical analysis</topic><topic>Partitions</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, William Y. C.</creatorcontrib><creatorcontrib>Sang, Doris D. M.</creatorcontrib><creatorcontrib>Shi, Diane Y. H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, William Y. C.</au><au>Sang, Doris D. M.</au><au>Shi, Diane Y. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Rogers–Ramanujan–Gordon theorem for overpartitions</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2013-06</date><risdate>2013</risdate><volume>106</volume><issue>6</issue><spage>1371</spage><epage>1393</epage><pages>1371-1393</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><abstract>Let Bk, i(n) be the number of partitions of n with certain difference condition and let Ak, i(n) be the number of partitions of n with certain congruence condition. The Rogers–Ramanujan–Gordon theorem states that Bk, i(n)=Ak, i(n). Lovejoy obtained an overpartition analogue of the Rogers–Ramanujan–Gordon theorem for the cases i=1 and i=k. We find an overpartition analogue of the Rogers–Ramanujan–Gordon theorem in the general case. Let Dk, i(n) be the number of overpartitions of n satisfying certain difference condition and Ck, i(n) be the number of overpartitions of n whose non‐overlined parts satisfy certain congruence condition. We show that Ck, i(n)=Dk, i(n). By using a function introduced by Andrews, we obtain a recurrence relation that implies that the generating function of Dk, i(n) equals the generating function of Ck, i(n). By introducing the Gordon marking of an overpartition, we find a generating function formula for Dk, i(n) that can be considered an overpartition analogue of an identity of Andrews for ordinary partitions.</abstract><pub>Oxford University Press</pub><doi>10.1112/plms/pds056</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6115
ispartof Proceedings of the London Mathematical Society, 2013-06, Vol.106 (6), p.1371-1393
issn 0024-6115
1460-244X
language eng
recordid cdi_proquest_miscellaneous_1559711600
source Wiley Online Library
subjects Analogue
Congruences
Functions (mathematics)
Mathematical analysis
Partitions
Theorems
title The Rogers–Ramanujan–Gordon theorem for overpartitions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T17%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Rogers%E2%80%93Ramanujan%E2%80%93Gordon%20theorem%20for%20overpartitions&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Chen,%20William%20Y.%20C.&rft.date=2013-06&rft.volume=106&rft.issue=6&rft.spage=1371&rft.epage=1393&rft.pages=1371-1393&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms/pds056&rft_dat=%3Cproquest_cross%3E1559711600%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3451-a031a71e876b281a79eda77e17d0c0952f51f04ebdfbd7029c93b5e51fdd3e453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1559711600&rft_id=info:pmid/&rfr_iscdi=true