Loading…

Holographic memory optical system based on computer-generated Fourier holograms

Holography is known to be a prospective tool for storing large amounts of digital information, providing long lasting safety and high speed data access. In this paper, we present a new approach to holographic memory system design. Our method is based on an application of discrete Fourier-transform c...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2013-11, Vol.52 (33), p.8142-8145
Main Authors: Betin, A Yu, Bobrinev, V I, Odinokov, S B, Evtikhiev, N N, Starikov, R S, Starikov, S N, Zlokazov, E Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-e618b40a27f2965e710f416a1d1a273908f9f5f473e274f29fe0ecb9e13a4fad3
cites cdi_FETCH-LOGICAL-c390t-e618b40a27f2965e710f416a1d1a273908f9f5f473e274f29fe0ecb9e13a4fad3
container_end_page 8145
container_issue 33
container_start_page 8142
container_title Applied optics (2004)
container_volume 52
creator Betin, A Yu
Bobrinev, V I
Odinokov, S B
Evtikhiev, N N
Starikov, R S
Starikov, S N
Zlokazov, E Yu
description Holography is known to be a prospective tool for storing large amounts of digital information, providing long lasting safety and high speed data access. In this paper, we present a new approach to holographic memory system design. Our method is based on an application of discrete Fourier-transform calculations to encode two-dimensional binary data pages as computer-generated amplitude Fourier holograms (CGFHs). These CGFHs, represented as grayscale raster images, can be displayed with the use of a high resolution amplitude spatial light modulator (SLM) in an optical projection system and exposed on holographic medium with multiple reduction. The optical scheme required for the technical realization of this method appears significantly simpler compared with known holographic memory recording devices; moreover, it can be built using either coherent or incoherent light sources. Coding of data pages by precise pseudorandom phase masks during CGFH synthesis allows us to achieve about 3% of the recorded microholograms diffraction efficiency. The experimental results of CGFH projection recorded with a 20× reduction on photosensitive holographic medium and its reconstruction are presented.
doi_str_mv 10.1364/ao.52.008142
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551090799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551090799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-e618b40a27f2965e710f416a1d1a273908f9f5f473e274f29fe0ecb9e13a4fad3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMobk5vnqVHD3bmZ7Mcx3BOGOyi4C2k7Zet0iw1aQ_77410evpeXh4e-F6E7gmeE1bwZ-Pngs4xXhBOL9CUEiFyRgpxiaYpqpzQxecE3cT4hTETXMlrNKFcECYlnqLdxrd-H0x3aKrMgfPhlPmubyrTZvEUe3BZaSLUmT9mlXfd0EPI93CEYPrUrv0QGgjZYbS4eIuurGkj3J3vDH2sX95Xm3y7e31bLbd5xRTucyjIouTYUGmpKgRIgi0nhSE1SV1CFlZZYblkQCVPjAUMVamAMMOtqdkMPY7eLvjvAWKvXRMraFtzBD9EnV4nWGGpVEKfRrQKPsYAVnehcSacNMH6d0K93GlB9Thhwh_O5qF0UP_Df5uxH0xibLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551090799</pqid></control><display><type>article</type><title>Holographic memory optical system based on computer-generated Fourier holograms</title><source>Optica Publishing Group Journals</source><creator>Betin, A Yu ; Bobrinev, V I ; Odinokov, S B ; Evtikhiev, N N ; Starikov, R S ; Starikov, S N ; Zlokazov, E Yu</creator><creatorcontrib>Betin, A Yu ; Bobrinev, V I ; Odinokov, S B ; Evtikhiev, N N ; Starikov, R S ; Starikov, S N ; Zlokazov, E Yu</creatorcontrib><description>Holography is known to be a prospective tool for storing large amounts of digital information, providing long lasting safety and high speed data access. In this paper, we present a new approach to holographic memory system design. Our method is based on an application of discrete Fourier-transform calculations to encode two-dimensional binary data pages as computer-generated amplitude Fourier holograms (CGFHs). These CGFHs, represented as grayscale raster images, can be displayed with the use of a high resolution amplitude spatial light modulator (SLM) in an optical projection system and exposed on holographic medium with multiple reduction. The optical scheme required for the technical realization of this method appears significantly simpler compared with known holographic memory recording devices; moreover, it can be built using either coherent or incoherent light sources. Coding of data pages by precise pseudorandom phase masks during CGFH synthesis allows us to achieve about 3% of the recorded microholograms diffraction efficiency. The experimental results of CGFH projection recorded with a 20× reduction on photosensitive holographic medium and its reconstruction are presented.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/ao.52.008142</identifier><identifier>PMID: 24513770</identifier><language>eng</language><publisher>United States</publisher><subject>Amplitudes ; Fourier analysis ; Holograms ; Holography ; Projection ; Raster ; Reconstruction ; Reduction</subject><ispartof>Applied optics (2004), 2013-11, Vol.52 (33), p.8142-8145</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-e618b40a27f2965e710f416a1d1a273908f9f5f473e274f29fe0ecb9e13a4fad3</citedby><cites>FETCH-LOGICAL-c390t-e618b40a27f2965e710f416a1d1a273908f9f5f473e274f29fe0ecb9e13a4fad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,3277,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24513770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Betin, A Yu</creatorcontrib><creatorcontrib>Bobrinev, V I</creatorcontrib><creatorcontrib>Odinokov, S B</creatorcontrib><creatorcontrib>Evtikhiev, N N</creatorcontrib><creatorcontrib>Starikov, R S</creatorcontrib><creatorcontrib>Starikov, S N</creatorcontrib><creatorcontrib>Zlokazov, E Yu</creatorcontrib><title>Holographic memory optical system based on computer-generated Fourier holograms</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Holography is known to be a prospective tool for storing large amounts of digital information, providing long lasting safety and high speed data access. In this paper, we present a new approach to holographic memory system design. Our method is based on an application of discrete Fourier-transform calculations to encode two-dimensional binary data pages as computer-generated amplitude Fourier holograms (CGFHs). These CGFHs, represented as grayscale raster images, can be displayed with the use of a high resolution amplitude spatial light modulator (SLM) in an optical projection system and exposed on holographic medium with multiple reduction. The optical scheme required for the technical realization of this method appears significantly simpler compared with known holographic memory recording devices; moreover, it can be built using either coherent or incoherent light sources. Coding of data pages by precise pseudorandom phase masks during CGFH synthesis allows us to achieve about 3% of the recorded microholograms diffraction efficiency. The experimental results of CGFH projection recorded with a 20× reduction on photosensitive holographic medium and its reconstruction are presented.</description><subject>Amplitudes</subject><subject>Fourier analysis</subject><subject>Holograms</subject><subject>Holography</subject><subject>Projection</subject><subject>Raster</subject><subject>Reconstruction</subject><subject>Reduction</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAYhoMobk5vnqVHD3bmZ7Mcx3BOGOyi4C2k7Zet0iw1aQ_77410evpeXh4e-F6E7gmeE1bwZ-Pngs4xXhBOL9CUEiFyRgpxiaYpqpzQxecE3cT4hTETXMlrNKFcECYlnqLdxrd-H0x3aKrMgfPhlPmubyrTZvEUe3BZaSLUmT9mlXfd0EPI93CEYPrUrv0QGgjZYbS4eIuurGkj3J3vDH2sX95Xm3y7e31bLbd5xRTucyjIouTYUGmpKgRIgi0nhSE1SV1CFlZZYblkQCVPjAUMVamAMMOtqdkMPY7eLvjvAWKvXRMraFtzBD9EnV4nWGGpVEKfRrQKPsYAVnehcSacNMH6d0K93GlB9Thhwh_O5qF0UP_Df5uxH0xibLM</recordid><startdate>20131120</startdate><enddate>20131120</enddate><creator>Betin, A Yu</creator><creator>Bobrinev, V I</creator><creator>Odinokov, S B</creator><creator>Evtikhiev, N N</creator><creator>Starikov, R S</creator><creator>Starikov, S N</creator><creator>Zlokazov, E Yu</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131120</creationdate><title>Holographic memory optical system based on computer-generated Fourier holograms</title><author>Betin, A Yu ; Bobrinev, V I ; Odinokov, S B ; Evtikhiev, N N ; Starikov, R S ; Starikov, S N ; Zlokazov, E Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-e618b40a27f2965e710f416a1d1a273908f9f5f473e274f29fe0ecb9e13a4fad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amplitudes</topic><topic>Fourier analysis</topic><topic>Holograms</topic><topic>Holography</topic><topic>Projection</topic><topic>Raster</topic><topic>Reconstruction</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betin, A Yu</creatorcontrib><creatorcontrib>Bobrinev, V I</creatorcontrib><creatorcontrib>Odinokov, S B</creatorcontrib><creatorcontrib>Evtikhiev, N N</creatorcontrib><creatorcontrib>Starikov, R S</creatorcontrib><creatorcontrib>Starikov, S N</creatorcontrib><creatorcontrib>Zlokazov, E Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betin, A Yu</au><au>Bobrinev, V I</au><au>Odinokov, S B</au><au>Evtikhiev, N N</au><au>Starikov, R S</au><au>Starikov, S N</au><au>Zlokazov, E Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holographic memory optical system based on computer-generated Fourier holograms</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2013-11-20</date><risdate>2013</risdate><volume>52</volume><issue>33</issue><spage>8142</spage><epage>8145</epage><pages>8142-8145</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Holography is known to be a prospective tool for storing large amounts of digital information, providing long lasting safety and high speed data access. In this paper, we present a new approach to holographic memory system design. Our method is based on an application of discrete Fourier-transform calculations to encode two-dimensional binary data pages as computer-generated amplitude Fourier holograms (CGFHs). These CGFHs, represented as grayscale raster images, can be displayed with the use of a high resolution amplitude spatial light modulator (SLM) in an optical projection system and exposed on holographic medium with multiple reduction. The optical scheme required for the technical realization of this method appears significantly simpler compared with known holographic memory recording devices; moreover, it can be built using either coherent or incoherent light sources. Coding of data pages by precise pseudorandom phase masks during CGFH synthesis allows us to achieve about 3% of the recorded microholograms diffraction efficiency. The experimental results of CGFH projection recorded with a 20× reduction on photosensitive holographic medium and its reconstruction are presented.</abstract><cop>United States</cop><pmid>24513770</pmid><doi>10.1364/ao.52.008142</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2013-11, Vol.52 (33), p.8142-8145
issn 1559-128X
2155-3165
language eng
recordid cdi_proquest_miscellaneous_1551090799
source Optica Publishing Group Journals
subjects Amplitudes
Fourier analysis
Holograms
Holography
Projection
Raster
Reconstruction
Reduction
title Holographic memory optical system based on computer-generated Fourier holograms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T20%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holographic%20memory%20optical%20system%20based%20on%20computer-generated%20Fourier%20holograms&rft.jtitle=Applied%20optics%20(2004)&rft.au=Betin,%20A%20Yu&rft.date=2013-11-20&rft.volume=52&rft.issue=33&rft.spage=8142&rft.epage=8145&rft.pages=8142-8145&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/ao.52.008142&rft_dat=%3Cproquest_cross%3E1551090799%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-e618b40a27f2965e710f416a1d1a273908f9f5f473e274f29fe0ecb9e13a4fad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551090799&rft_id=info:pmid/24513770&rfr_iscdi=true