Loading…

Corrosion Resistance and Cathodic Delamination of an Epoxy/Polyamide Coating on Milled Steel

An epoxy/polyamide coating was reinforced with various loadings of aluminum particles. The coatings were applied on steel panels. The corrosion resistance, cathodic delamination, and surface morphology of the coatings were studied by electrochemical impedance spectroscopy (EIS) (3.5 wt% sodium chlor...

Full description

Saved in:
Bibliographic Details
Published in:Corrosion (Houston, Tex.) Tex.), 2014, Vol.70 (1), p.56-65
Main Authors: RAMEZANZADEH, B, KHAZAEI, M, RAJABI, A, HEIDARI, G, KHAZAEI, D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c310t-41a8176f33023071721f99f8b8fd4b466394a44ceb136bdc17002ee2ce76bb853
cites cdi_FETCH-LOGICAL-c310t-41a8176f33023071721f99f8b8fd4b466394a44ceb136bdc17002ee2ce76bb853
container_end_page 65
container_issue 1
container_start_page 56
container_title Corrosion (Houston, Tex.)
container_volume 70
creator RAMEZANZADEH, B
KHAZAEI, M
RAJABI, A
HEIDARI, G
KHAZAEI, D
description An epoxy/polyamide coating was reinforced with various loadings of aluminum particles. The coatings were applied on steel panels. The corrosion resistance, cathodic delamination, and surface morphology of the coatings were studied by electrochemical impedance spectroscopy (EIS) (3.5 wt% sodium chloride [NaCl]), a sacrificial Mg anode, optical microscopy, and x-ray diffraction (XRD) techniques, respectively. Results showed that aluminum particles improved corrosion resistance of the epoxy coating significantly. The rate of cathodic delamination of the coating was reduced in the presence of the particles noticeably. The corrosion protection mechanism of the coating was changed using low and high loadings of the particles. The aluminum particles showed active/passive behaviors against the corrosive electrolyte depending on exposure times. The lamellar aluminum particles improved barrier properties of the coating and behaved as a sacrificial pigment at long immersion times. This pigment reduced cathodic activity of the substrate by an aluminum oxide layer formation.
doi_str_mv 10.5006/1039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513479703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421606731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-41a8176f33023071721f99f8b8fd4b466394a44ceb136bdc17002ee2ce76bb853</originalsourceid><addsrcrecordid>eNpd0F1LwzAUxvEgCs7N71BQwZu6c5I0bS6lzheYKL6AF0JJ00Q7smY2Hbhvb8bEC69y8fw4hD8hE4SLDEBMEZjcIyOUrEgxk2_7ZASAkEqG9JAchbAAAF4UbETeS9_3PrS-S55MaMOgOm0S1TVJqYZP37Q6uTJOLdtODVvkbRyT2cp_b6aP3m3i0pik9HHtPpII7lvnTJM8D8a4CTmwygVz_PuOyev17KW8TecPN3fl5TzVDGFIOaoCc2EZA8ogx5yildIWdWEbXnMhmOSKc21qZKJuNOYA1BiqTS7qusjYmJzv7q56_7U2YaiWbdDGOdUZvw4VZsh4LnNgkZ78owu_7rv4u4pyigJEzjCq053SsU3oja1WfbtU_aZCqLaJq23iyM5-j6mglbN9jNeGP0uLjMbKgv0AMGF4Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421606731</pqid></control><display><type>article</type><title>Corrosion Resistance and Cathodic Delamination of an Epoxy/Polyamide Coating on Milled Steel</title><source>Allen Press Miscellaneous</source><creator>RAMEZANZADEH, B ; KHAZAEI, M ; RAJABI, A ; HEIDARI, G ; KHAZAEI, D</creator><creatorcontrib>RAMEZANZADEH, B ; KHAZAEI, M ; RAJABI, A ; HEIDARI, G ; KHAZAEI, D</creatorcontrib><description>An epoxy/polyamide coating was reinforced with various loadings of aluminum particles. The coatings were applied on steel panels. The corrosion resistance, cathodic delamination, and surface morphology of the coatings were studied by electrochemical impedance spectroscopy (EIS) (3.5 wt% sodium chloride [NaCl]), a sacrificial Mg anode, optical microscopy, and x-ray diffraction (XRD) techniques, respectively. Results showed that aluminum particles improved corrosion resistance of the epoxy coating significantly. The rate of cathodic delamination of the coating was reduced in the presence of the particles noticeably. The corrosion protection mechanism of the coating was changed using low and high loadings of the particles. The aluminum particles showed active/passive behaviors against the corrosive electrolyte depending on exposure times. The lamellar aluminum particles improved barrier properties of the coating and behaved as a sacrificial pigment at long immersion times. This pigment reduced cathodic activity of the substrate by an aluminum oxide layer formation.</description><identifier>ISSN: 0010-9312</identifier><identifier>EISSN: 1938-159X</identifier><identifier>DOI: 10.5006/1039</identifier><identifier>CODEN: CORRAK</identifier><language>eng</language><publisher>Houston, TX: NACE International</publisher><subject>Aluminium ; Aluminum ; Aluminum base alloys ; Aluminum oxide ; Analytical methods ; Applied sciences ; Cathodic coating (process) ; Cathodic protection ; Chloride ; Coating ; Coatings ; Corrosion ; Corrosion environments ; Corrosion mechanisms ; Corrosion prevention ; Corrosion resistance ; Corrosion resistant steels ; Delaminating ; Delamination ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrodes ; Electrolytes ; Epoxy compounds ; Epoxy resins ; Exact sciences and technology ; Light microscopy ; Metals. Metallurgy ; Morphology ; Nonmetallic coatings ; Optical microscopy ; Oxide coatings ; Particulates ; Pigments ; Polyamide resins ; Polyamides ; Production techniques ; Protective coatings ; Salt ; Sodium ; Sodium chloride ; Spectroscopy ; Steel ; Submerging ; Substrates ; Surface treatment ; X-ray diffraction ; Zinc</subject><ispartof>Corrosion (Houston, Tex.), 2014, Vol.70 (1), p.56-65</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright NACE International Jan 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-41a8176f33023071721f99f8b8fd4b466394a44ceb136bdc17002ee2ce76bb853</citedby><cites>FETCH-LOGICAL-c310t-41a8176f33023071721f99f8b8fd4b466394a44ceb136bdc17002ee2ce76bb853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,4043,27956,27957,27958</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28524886$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RAMEZANZADEH, B</creatorcontrib><creatorcontrib>KHAZAEI, M</creatorcontrib><creatorcontrib>RAJABI, A</creatorcontrib><creatorcontrib>HEIDARI, G</creatorcontrib><creatorcontrib>KHAZAEI, D</creatorcontrib><title>Corrosion Resistance and Cathodic Delamination of an Epoxy/Polyamide Coating on Milled Steel</title><title>Corrosion (Houston, Tex.)</title><description>An epoxy/polyamide coating was reinforced with various loadings of aluminum particles. The coatings were applied on steel panels. The corrosion resistance, cathodic delamination, and surface morphology of the coatings were studied by electrochemical impedance spectroscopy (EIS) (3.5 wt% sodium chloride [NaCl]), a sacrificial Mg anode, optical microscopy, and x-ray diffraction (XRD) techniques, respectively. Results showed that aluminum particles improved corrosion resistance of the epoxy coating significantly. The rate of cathodic delamination of the coating was reduced in the presence of the particles noticeably. The corrosion protection mechanism of the coating was changed using low and high loadings of the particles. The aluminum particles showed active/passive behaviors against the corrosive electrolyte depending on exposure times. The lamellar aluminum particles improved barrier properties of the coating and behaved as a sacrificial pigment at long immersion times. This pigment reduced cathodic activity of the substrate by an aluminum oxide layer formation.</description><subject>Aluminium</subject><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Aluminum oxide</subject><subject>Analytical methods</subject><subject>Applied sciences</subject><subject>Cathodic coating (process)</subject><subject>Cathodic protection</subject><subject>Chloride</subject><subject>Coating</subject><subject>Coatings</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Corrosion mechanisms</subject><subject>Corrosion prevention</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant steels</subject><subject>Delaminating</subject><subject>Delamination</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Epoxy compounds</subject><subject>Epoxy resins</subject><subject>Exact sciences and technology</subject><subject>Light microscopy</subject><subject>Metals. Metallurgy</subject><subject>Morphology</subject><subject>Nonmetallic coatings</subject><subject>Optical microscopy</subject><subject>Oxide coatings</subject><subject>Particulates</subject><subject>Pigments</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Production techniques</subject><subject>Protective coatings</subject><subject>Salt</subject><subject>Sodium</subject><subject>Sodium chloride</subject><subject>Spectroscopy</subject><subject>Steel</subject><subject>Submerging</subject><subject>Substrates</subject><subject>Surface treatment</subject><subject>X-ray diffraction</subject><subject>Zinc</subject><issn>0010-9312</issn><issn>1938-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpd0F1LwzAUxvEgCs7N71BQwZu6c5I0bS6lzheYKL6AF0JJ00Q7smY2Hbhvb8bEC69y8fw4hD8hE4SLDEBMEZjcIyOUrEgxk2_7ZASAkEqG9JAchbAAAF4UbETeS9_3PrS-S55MaMOgOm0S1TVJqYZP37Q6uTJOLdtODVvkbRyT2cp_b6aP3m3i0pik9HHtPpII7lvnTJM8D8a4CTmwygVz_PuOyev17KW8TecPN3fl5TzVDGFIOaoCc2EZA8ogx5yildIWdWEbXnMhmOSKc21qZKJuNOYA1BiqTS7qusjYmJzv7q56_7U2YaiWbdDGOdUZvw4VZsh4LnNgkZ78owu_7rv4u4pyigJEzjCq053SsU3oja1WfbtU_aZCqLaJq23iyM5-j6mglbN9jNeGP0uLjMbKgv0AMGF4Rg</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>RAMEZANZADEH, B</creator><creator>KHAZAEI, M</creator><creator>RAJABI, A</creator><creator>HEIDARI, G</creator><creator>KHAZAEI, D</creator><general>NACE International</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SE</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QF</scope><scope>7SP</scope><scope>L7M</scope></search><sort><creationdate>2014</creationdate><title>Corrosion Resistance and Cathodic Delamination of an Epoxy/Polyamide Coating on Milled Steel</title><author>RAMEZANZADEH, B ; KHAZAEI, M ; RAJABI, A ; HEIDARI, G ; KHAZAEI, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-41a8176f33023071721f99f8b8fd4b466394a44ceb136bdc17002ee2ce76bb853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminium</topic><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Aluminum oxide</topic><topic>Analytical methods</topic><topic>Applied sciences</topic><topic>Cathodic coating (process)</topic><topic>Cathodic protection</topic><topic>Chloride</topic><topic>Coating</topic><topic>Coatings</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Corrosion mechanisms</topic><topic>Corrosion prevention</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant steels</topic><topic>Delaminating</topic><topic>Delamination</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Epoxy compounds</topic><topic>Epoxy resins</topic><topic>Exact sciences and technology</topic><topic>Light microscopy</topic><topic>Metals. Metallurgy</topic><topic>Morphology</topic><topic>Nonmetallic coatings</topic><topic>Optical microscopy</topic><topic>Oxide coatings</topic><topic>Particulates</topic><topic>Pigments</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Production techniques</topic><topic>Protective coatings</topic><topic>Salt</topic><topic>Sodium</topic><topic>Sodium chloride</topic><topic>Spectroscopy</topic><topic>Steel</topic><topic>Submerging</topic><topic>Substrates</topic><topic>Surface treatment</topic><topic>X-ray diffraction</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RAMEZANZADEH, B</creatorcontrib><creatorcontrib>KHAZAEI, M</creatorcontrib><creatorcontrib>RAJABI, A</creatorcontrib><creatorcontrib>HEIDARI, G</creatorcontrib><creatorcontrib>KHAZAEI, D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Corrosion Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aluminium Industry Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Corrosion (Houston, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RAMEZANZADEH, B</au><au>KHAZAEI, M</au><au>RAJABI, A</au><au>HEIDARI, G</au><au>KHAZAEI, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion Resistance and Cathodic Delamination of an Epoxy/Polyamide Coating on Milled Steel</atitle><jtitle>Corrosion (Houston, Tex.)</jtitle><date>2014</date><risdate>2014</risdate><volume>70</volume><issue>1</issue><spage>56</spage><epage>65</epage><pages>56-65</pages><issn>0010-9312</issn><eissn>1938-159X</eissn><coden>CORRAK</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>An epoxy/polyamide coating was reinforced with various loadings of aluminum particles. The coatings were applied on steel panels. The corrosion resistance, cathodic delamination, and surface morphology of the coatings were studied by electrochemical impedance spectroscopy (EIS) (3.5 wt% sodium chloride [NaCl]), a sacrificial Mg anode, optical microscopy, and x-ray diffraction (XRD) techniques, respectively. Results showed that aluminum particles improved corrosion resistance of the epoxy coating significantly. The rate of cathodic delamination of the coating was reduced in the presence of the particles noticeably. The corrosion protection mechanism of the coating was changed using low and high loadings of the particles. The aluminum particles showed active/passive behaviors against the corrosive electrolyte depending on exposure times. The lamellar aluminum particles improved barrier properties of the coating and behaved as a sacrificial pigment at long immersion times. This pigment reduced cathodic activity of the substrate by an aluminum oxide layer formation.</abstract><cop>Houston, TX</cop><pub>NACE International</pub><doi>10.5006/1039</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-9312
ispartof Corrosion (Houston, Tex.), 2014, Vol.70 (1), p.56-65
issn 0010-9312
1938-159X
language eng
recordid cdi_proquest_miscellaneous_1513479703
source Allen Press Miscellaneous
subjects Aluminium
Aluminum
Aluminum base alloys
Aluminum oxide
Analytical methods
Applied sciences
Cathodic coating (process)
Cathodic protection
Chloride
Coating
Coatings
Corrosion
Corrosion environments
Corrosion mechanisms
Corrosion prevention
Corrosion resistance
Corrosion resistant steels
Delaminating
Delamination
Electrochemical impedance spectroscopy
Electrochemistry
Electrodes
Electrolytes
Epoxy compounds
Epoxy resins
Exact sciences and technology
Light microscopy
Metals. Metallurgy
Morphology
Nonmetallic coatings
Optical microscopy
Oxide coatings
Particulates
Pigments
Polyamide resins
Polyamides
Production techniques
Protective coatings
Salt
Sodium
Sodium chloride
Spectroscopy
Steel
Submerging
Substrates
Surface treatment
X-ray diffraction
Zinc
title Corrosion Resistance and Cathodic Delamination of an Epoxy/Polyamide Coating on Milled Steel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T15%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20Resistance%20and%20Cathodic%20Delamination%20of%20an%20Epoxy/Polyamide%20Coating%20on%20Milled%20Steel&rft.jtitle=Corrosion%20(Houston,%20Tex.)&rft.au=RAMEZANZADEH,%20B&rft.date=2014&rft.volume=70&rft.issue=1&rft.spage=56&rft.epage=65&rft.pages=56-65&rft.issn=0010-9312&rft.eissn=1938-159X&rft.coden=CORRAK&rft_id=info:doi/10.5006/1039&rft_dat=%3Cproquest_cross%3E2421606731%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-41a8176f33023071721f99f8b8fd4b466394a44ceb136bdc17002ee2ce76bb853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2421606731&rft_id=info:pmid/&rfr_iscdi=true