Loading…

Systems biology analysis of Drosophila in vivo screen data elucidates core networks for DNA damage repair in SCA1

DNA damage repair is implicated in neurodegenerative diseases; however, the relative contributions of various DNA repair systems to the pathology of these diseases have not been investigated systematically. In this study, we performed a systematic in vivo screen of all available Drosophila melanogas...

Full description

Saved in:
Bibliographic Details
Published in:Human molecular genetics 2014-03, Vol.23 (5), p.1345-1364
Main Authors: Barclay, Sam S, Tamura, Takuya, Ito, Hikaru, Fujita, Kyota, Tagawa, Kazuhiko, Shimamura, Teppei, Katsuta, Asuka, Shiwaku, Hiroki, Sone, Masaki, Imoto, Seiya, Miyano, Satoru, Okazawa, Hitoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-91d1d8757f51f45e9c0e1d318cdea99799f2fbeb61c70b425b4dcf8a4aeb00ca3
cites cdi_FETCH-LOGICAL-c356t-91d1d8757f51f45e9c0e1d318cdea99799f2fbeb61c70b425b4dcf8a4aeb00ca3
container_end_page 1364
container_issue 5
container_start_page 1345
container_title Human molecular genetics
container_volume 23
creator Barclay, Sam S
Tamura, Takuya
Ito, Hikaru
Fujita, Kyota
Tagawa, Kazuhiko
Shimamura, Teppei
Katsuta, Asuka
Shiwaku, Hiroki
Sone, Masaki
Imoto, Seiya
Miyano, Satoru
Okazawa, Hitoshi
description DNA damage repair is implicated in neurodegenerative diseases; however, the relative contributions of various DNA repair systems to the pathology of these diseases have not been investigated systematically. In this study, we performed a systematic in vivo screen of all available Drosophila melanogaster homolog DNA repair genes, and we tested the effect of their overexpression on lifespan and developmental viability in Spinocerebellar Ataxia Type 1 (SCA1) Drosophila models expressing human mutant Ataxin-1 (Atxn1). We identified genes previously unknown to be involved in CAG-/polyQ-related pathogenesis that function in multiple DNA damage repair systems. Beyond the significance of each repair system, systems biology analyses unraveled the core networks connecting positive genes in the gene screen that could contribute to SCA1 pathology. In particular, RpA1, which had the largest effect on lifespan in the SCA1 fly model, was located at the hub position linked to such core repair systems, including homologous recombination (HR). We revealed that Atxn1 actually interacted with RpA1 and its essential partners BRCA1/2. Furthermore, mutant but not normal Atxn1 impaired the dynamics of RpA1 in the nucleus after DNA damage. Uptake of BrdU by Purkinje cells was observed in mutant Atxn1 knockin mice, suggesting their abnormal entry to the S-phase. In addition, chemical and genetic inhibitions of Chk1 elongated lifespan and recovered eye degeneration. Collectively, we elucidated core networks for DNA damage repair in SCA1 that might include the aberrant usage of HR.
doi_str_mv 10.1093/hmg/ddt524
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1505350327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1505350327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-91d1d8757f51f45e9c0e1d318cdea99799f2fbeb61c70b425b4dcf8a4aeb00ca3</originalsourceid><addsrcrecordid>eNqFkU9PwjAYhxujEUQvfgDTozGZtGu70SMB_yVED-h56dq3UN1WaAeGb-8I6NXT-x6ePIffg9A1JfeUSDZc1ouhMa1I-QnqU56RJCUjdor6RGY8ySTJeugixk9CaMZZfo56Kae5pDnro_V8F1uoIy6dr_xih1Wjql10EXuLp8FHv1q6SmHX4K3behx1AGiwUa3CUG206z6IWPsAuIH224eviK0PePo67qhaLQAHWCkX9or5ZEwv0ZlVVYSr4x2gj8eH98lzMnt7epmMZ4lmImsTSQ01o1zkVlDLBUhNgBpGR9qAkjKX0qa2hDKjOiclT0XJjbYjxRWUhGjFBuj24F0Fv95AbIvaRQ1VpRrwm1hQQQQThKX5_yiXkjLGUtKhdwdUd9vEALZYBVersCsoKfY1iq5GcajRwTdH76aswfyhv_OzH4ODhx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499133320</pqid></control><display><type>article</type><title>Systems biology analysis of Drosophila in vivo screen data elucidates core networks for DNA damage repair in SCA1</title><source>OUP_牛津大学出版社现刊</source><creator>Barclay, Sam S ; Tamura, Takuya ; Ito, Hikaru ; Fujita, Kyota ; Tagawa, Kazuhiko ; Shimamura, Teppei ; Katsuta, Asuka ; Shiwaku, Hiroki ; Sone, Masaki ; Imoto, Seiya ; Miyano, Satoru ; Okazawa, Hitoshi</creator><creatorcontrib>Barclay, Sam S ; Tamura, Takuya ; Ito, Hikaru ; Fujita, Kyota ; Tagawa, Kazuhiko ; Shimamura, Teppei ; Katsuta, Asuka ; Shiwaku, Hiroki ; Sone, Masaki ; Imoto, Seiya ; Miyano, Satoru ; Okazawa, Hitoshi</creatorcontrib><description>DNA damage repair is implicated in neurodegenerative diseases; however, the relative contributions of various DNA repair systems to the pathology of these diseases have not been investigated systematically. In this study, we performed a systematic in vivo screen of all available Drosophila melanogaster homolog DNA repair genes, and we tested the effect of their overexpression on lifespan and developmental viability in Spinocerebellar Ataxia Type 1 (SCA1) Drosophila models expressing human mutant Ataxin-1 (Atxn1). We identified genes previously unknown to be involved in CAG-/polyQ-related pathogenesis that function in multiple DNA damage repair systems. Beyond the significance of each repair system, systems biology analyses unraveled the core networks connecting positive genes in the gene screen that could contribute to SCA1 pathology. In particular, RpA1, which had the largest effect on lifespan in the SCA1 fly model, was located at the hub position linked to such core repair systems, including homologous recombination (HR). We revealed that Atxn1 actually interacted with RpA1 and its essential partners BRCA1/2. Furthermore, mutant but not normal Atxn1 impaired the dynamics of RpA1 in the nucleus after DNA damage. Uptake of BrdU by Purkinje cells was observed in mutant Atxn1 knockin mice, suggesting their abnormal entry to the S-phase. In addition, chemical and genetic inhibitions of Chk1 elongated lifespan and recovered eye degeneration. Collectively, we elucidated core networks for DNA damage repair in SCA1 that might include the aberrant usage of HR.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddt524</identifier><identifier>PMID: 24179173</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Animals, Genetically Modified ; Ataxin-1 ; Ataxins ; Cell Cycle - genetics ; Checkpoint Kinase 1 ; Disease Models, Animal ; DNA Damage ; DNA Repair ; Drosophila - genetics ; Drosophila melanogaster ; Female ; Gene Regulatory Networks ; Genetic Vectors - genetics ; Humans ; Longevity - genetics ; Male ; Mutagenesis, Insertional ; Mutation ; Nerve Tissue Proteins - genetics ; Nuclear Proteins - genetics ; Protein Kinases - metabolism ; Purkinje Cells - metabolism ; Signal Transduction ; Spinocerebellar Ataxias - genetics ; Spinocerebellar Ataxias - metabolism ; Spinocerebellar Ataxias - mortality ; Systems Biology</subject><ispartof>Human molecular genetics, 2014-03, Vol.23 (5), p.1345-1364</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-91d1d8757f51f45e9c0e1d318cdea99799f2fbeb61c70b425b4dcf8a4aeb00ca3</citedby><cites>FETCH-LOGICAL-c356t-91d1d8757f51f45e9c0e1d318cdea99799f2fbeb61c70b425b4dcf8a4aeb00ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24179173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barclay, Sam S</creatorcontrib><creatorcontrib>Tamura, Takuya</creatorcontrib><creatorcontrib>Ito, Hikaru</creatorcontrib><creatorcontrib>Fujita, Kyota</creatorcontrib><creatorcontrib>Tagawa, Kazuhiko</creatorcontrib><creatorcontrib>Shimamura, Teppei</creatorcontrib><creatorcontrib>Katsuta, Asuka</creatorcontrib><creatorcontrib>Shiwaku, Hiroki</creatorcontrib><creatorcontrib>Sone, Masaki</creatorcontrib><creatorcontrib>Imoto, Seiya</creatorcontrib><creatorcontrib>Miyano, Satoru</creatorcontrib><creatorcontrib>Okazawa, Hitoshi</creatorcontrib><title>Systems biology analysis of Drosophila in vivo screen data elucidates core networks for DNA damage repair in SCA1</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>DNA damage repair is implicated in neurodegenerative diseases; however, the relative contributions of various DNA repair systems to the pathology of these diseases have not been investigated systematically. In this study, we performed a systematic in vivo screen of all available Drosophila melanogaster homolog DNA repair genes, and we tested the effect of their overexpression on lifespan and developmental viability in Spinocerebellar Ataxia Type 1 (SCA1) Drosophila models expressing human mutant Ataxin-1 (Atxn1). We identified genes previously unknown to be involved in CAG-/polyQ-related pathogenesis that function in multiple DNA damage repair systems. Beyond the significance of each repair system, systems biology analyses unraveled the core networks connecting positive genes in the gene screen that could contribute to SCA1 pathology. In particular, RpA1, which had the largest effect on lifespan in the SCA1 fly model, was located at the hub position linked to such core repair systems, including homologous recombination (HR). We revealed that Atxn1 actually interacted with RpA1 and its essential partners BRCA1/2. Furthermore, mutant but not normal Atxn1 impaired the dynamics of RpA1 in the nucleus after DNA damage. Uptake of BrdU by Purkinje cells was observed in mutant Atxn1 knockin mice, suggesting their abnormal entry to the S-phase. In addition, chemical and genetic inhibitions of Chk1 elongated lifespan and recovered eye degeneration. Collectively, we elucidated core networks for DNA damage repair in SCA1 that might include the aberrant usage of HR.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Ataxin-1</subject><subject>Ataxins</subject><subject>Cell Cycle - genetics</subject><subject>Checkpoint Kinase 1</subject><subject>Disease Models, Animal</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>Drosophila - genetics</subject><subject>Drosophila melanogaster</subject><subject>Female</subject><subject>Gene Regulatory Networks</subject><subject>Genetic Vectors - genetics</subject><subject>Humans</subject><subject>Longevity - genetics</subject><subject>Male</subject><subject>Mutagenesis, Insertional</subject><subject>Mutation</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nuclear Proteins - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Purkinje Cells - metabolism</subject><subject>Signal Transduction</subject><subject>Spinocerebellar Ataxias - genetics</subject><subject>Spinocerebellar Ataxias - metabolism</subject><subject>Spinocerebellar Ataxias - mortality</subject><subject>Systems Biology</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU9PwjAYhxujEUQvfgDTozGZtGu70SMB_yVED-h56dq3UN1WaAeGb-8I6NXT-x6ePIffg9A1JfeUSDZc1ouhMa1I-QnqU56RJCUjdor6RGY8ySTJeugixk9CaMZZfo56Kae5pDnro_V8F1uoIy6dr_xih1Wjql10EXuLp8FHv1q6SmHX4K3behx1AGiwUa3CUG206z6IWPsAuIH224eviK0PePo67qhaLQAHWCkX9or5ZEwv0ZlVVYSr4x2gj8eH98lzMnt7epmMZ4lmImsTSQ01o1zkVlDLBUhNgBpGR9qAkjKX0qa2hDKjOiclT0XJjbYjxRWUhGjFBuj24F0Fv95AbIvaRQ1VpRrwm1hQQQQThKX5_yiXkjLGUtKhdwdUd9vEALZYBVersCsoKfY1iq5GcajRwTdH76aswfyhv_OzH4ODhx4</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Barclay, Sam S</creator><creator>Tamura, Takuya</creator><creator>Ito, Hikaru</creator><creator>Fujita, Kyota</creator><creator>Tagawa, Kazuhiko</creator><creator>Shimamura, Teppei</creator><creator>Katsuta, Asuka</creator><creator>Shiwaku, Hiroki</creator><creator>Sone, Masaki</creator><creator>Imoto, Seiya</creator><creator>Miyano, Satoru</creator><creator>Okazawa, Hitoshi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20140301</creationdate><title>Systems biology analysis of Drosophila in vivo screen data elucidates core networks for DNA damage repair in SCA1</title><author>Barclay, Sam S ; Tamura, Takuya ; Ito, Hikaru ; Fujita, Kyota ; Tagawa, Kazuhiko ; Shimamura, Teppei ; Katsuta, Asuka ; Shiwaku, Hiroki ; Sone, Masaki ; Imoto, Seiya ; Miyano, Satoru ; Okazawa, Hitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-91d1d8757f51f45e9c0e1d318cdea99799f2fbeb61c70b425b4dcf8a4aeb00ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Ataxin-1</topic><topic>Ataxins</topic><topic>Cell Cycle - genetics</topic><topic>Checkpoint Kinase 1</topic><topic>Disease Models, Animal</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>Drosophila - genetics</topic><topic>Drosophila melanogaster</topic><topic>Female</topic><topic>Gene Regulatory Networks</topic><topic>Genetic Vectors - genetics</topic><topic>Humans</topic><topic>Longevity - genetics</topic><topic>Male</topic><topic>Mutagenesis, Insertional</topic><topic>Mutation</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nuclear Proteins - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Purkinje Cells - metabolism</topic><topic>Signal Transduction</topic><topic>Spinocerebellar Ataxias - genetics</topic><topic>Spinocerebellar Ataxias - metabolism</topic><topic>Spinocerebellar Ataxias - mortality</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barclay, Sam S</creatorcontrib><creatorcontrib>Tamura, Takuya</creatorcontrib><creatorcontrib>Ito, Hikaru</creatorcontrib><creatorcontrib>Fujita, Kyota</creatorcontrib><creatorcontrib>Tagawa, Kazuhiko</creatorcontrib><creatorcontrib>Shimamura, Teppei</creatorcontrib><creatorcontrib>Katsuta, Asuka</creatorcontrib><creatorcontrib>Shiwaku, Hiroki</creatorcontrib><creatorcontrib>Sone, Masaki</creatorcontrib><creatorcontrib>Imoto, Seiya</creatorcontrib><creatorcontrib>Miyano, Satoru</creatorcontrib><creatorcontrib>Okazawa, Hitoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barclay, Sam S</au><au>Tamura, Takuya</au><au>Ito, Hikaru</au><au>Fujita, Kyota</au><au>Tagawa, Kazuhiko</au><au>Shimamura, Teppei</au><au>Katsuta, Asuka</au><au>Shiwaku, Hiroki</au><au>Sone, Masaki</au><au>Imoto, Seiya</au><au>Miyano, Satoru</au><au>Okazawa, Hitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systems biology analysis of Drosophila in vivo screen data elucidates core networks for DNA damage repair in SCA1</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>23</volume><issue>5</issue><spage>1345</spage><epage>1364</epage><pages>1345-1364</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>ObjectType-Article-2</notes><notes>ObjectType-Feature-1</notes><abstract>DNA damage repair is implicated in neurodegenerative diseases; however, the relative contributions of various DNA repair systems to the pathology of these diseases have not been investigated systematically. In this study, we performed a systematic in vivo screen of all available Drosophila melanogaster homolog DNA repair genes, and we tested the effect of their overexpression on lifespan and developmental viability in Spinocerebellar Ataxia Type 1 (SCA1) Drosophila models expressing human mutant Ataxin-1 (Atxn1). We identified genes previously unknown to be involved in CAG-/polyQ-related pathogenesis that function in multiple DNA damage repair systems. Beyond the significance of each repair system, systems biology analyses unraveled the core networks connecting positive genes in the gene screen that could contribute to SCA1 pathology. In particular, RpA1, which had the largest effect on lifespan in the SCA1 fly model, was located at the hub position linked to such core repair systems, including homologous recombination (HR). We revealed that Atxn1 actually interacted with RpA1 and its essential partners BRCA1/2. Furthermore, mutant but not normal Atxn1 impaired the dynamics of RpA1 in the nucleus after DNA damage. Uptake of BrdU by Purkinje cells was observed in mutant Atxn1 knockin mice, suggesting their abnormal entry to the S-phase. In addition, chemical and genetic inhibitions of Chk1 elongated lifespan and recovered eye degeneration. Collectively, we elucidated core networks for DNA damage repair in SCA1 that might include the aberrant usage of HR.</abstract><cop>England</cop><pmid>24179173</pmid><doi>10.1093/hmg/ddt524</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2014-03, Vol.23 (5), p.1345-1364
issn 0964-6906
1460-2083
language eng
recordid cdi_proquest_miscellaneous_1505350327
source OUP_牛津大学出版社现刊
subjects Animals
Animals, Genetically Modified
Ataxin-1
Ataxins
Cell Cycle - genetics
Checkpoint Kinase 1
Disease Models, Animal
DNA Damage
DNA Repair
Drosophila - genetics
Drosophila melanogaster
Female
Gene Regulatory Networks
Genetic Vectors - genetics
Humans
Longevity - genetics
Male
Mutagenesis, Insertional
Mutation
Nerve Tissue Proteins - genetics
Nuclear Proteins - genetics
Protein Kinases - metabolism
Purkinje Cells - metabolism
Signal Transduction
Spinocerebellar Ataxias - genetics
Spinocerebellar Ataxias - metabolism
Spinocerebellar Ataxias - mortality
Systems Biology
title Systems biology analysis of Drosophila in vivo screen data elucidates core networks for DNA damage repair in SCA1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T10%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systems%20biology%20analysis%20of%20Drosophila%20in%20vivo%20screen%20data%20elucidates%20core%20networks%20for%20DNA%20damage%20repair%20in%20SCA1&rft.jtitle=Human%20molecular%20genetics&rft.au=Barclay,%20Sam%20S&rft.date=2014-03-01&rft.volume=23&rft.issue=5&rft.spage=1345&rft.epage=1364&rft.pages=1345-1364&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddt524&rft_dat=%3Cproquest_cross%3E1505350327%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-91d1d8757f51f45e9c0e1d318cdea99799f2fbeb61c70b425b4dcf8a4aeb00ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1499133320&rft_id=info:pmid/24179173&rfr_iscdi=true