Loading…

Local Strain Engineering in Atomically Thin MoS2

Controlling the bandstructure through local-strain engineering is an exciting avenue for tailoring optoelectronic properties of materials at the nanoscale. Atomically thin materials are particularly well-suited for this purpose because they can withstand extreme nonhomogeneous deformations before ru...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2013-11, Vol.13 (11), p.5361-5366
Main Authors: Castellanos-Gomez, Andres, Roldán, Rafael, Cappelluti, Emmanuele, Buscema, Michele, Guinea, Francisco, van der Zant, Herre S. J, Steele, Gary A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5366
container_issue 11
container_start_page 5361
container_title Nano letters
container_volume 13
creator Castellanos-Gomez, Andres
Roldán, Rafael
Cappelluti, Emmanuele
Buscema, Michele
Guinea, Francisco
van der Zant, Herre S. J
Steele, Gary A
description Controlling the bandstructure through local-strain engineering is an exciting avenue for tailoring optoelectronic properties of materials at the nanoscale. Atomically thin materials are particularly well-suited for this purpose because they can withstand extreme nonhomogeneous deformations before rupture. Here, we study the effect of large localized strain in the electronic bandstructure of atomically thin MoS2. Using photoluminescence imaging, we observe a strain-induced reduction of the direct bandgap and funneling of photogenerated excitons toward regions of higher strain. To understand these results, we develop a nonuniform tight-binding model to calculate the electronic properties of MoS2 nanolayers with complex and realistic local strain geometries, finding good agreement with our experimental results.
doi_str_mv 10.1021/nl402875m
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1458503827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1458503827</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-f9d23efeb8abcba15b686afc12de6731b8819db44b224b74089bdd03a79182d43</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EoqVw4A-gXJC4BPyM7WNVlYcUxKHlbNmxU1IlTrGTQ_89RpT2tDuaT6udAeAWwUcEMXryLYVYcNadgSliBOaFlPj8uAs6AVcxbiGEkjB4CSaYQkEYhlMAy77SbbYagm58tvSbxjsXGr_JkpwPfdcku91n66-k3_sVvgYXtW6juznMGfh8Xq4Xr3n58fK2mJe5JhwPeS0tJq52RmhTGY2YKUSh6wph6wpOkBECSWsoNRhTw9M_0lgLieYSCWwpmYGHv7u70H-PLg6qa2Ll2lZ7149RIcoEg0RgntC7Azqazlm1C02nw179p0zA_QHQMcWpg_ZVE08cl1KQgpw4XUW17cfgU0KFoPptWR1bJj_Sumn5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458503827</pqid></control><display><type>article</type><title>Local Strain Engineering in Atomically Thin MoS2</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Castellanos-Gomez, Andres ; Roldán, Rafael ; Cappelluti, Emmanuele ; Buscema, Michele ; Guinea, Francisco ; van der Zant, Herre S. J ; Steele, Gary A</creator><creatorcontrib>Castellanos-Gomez, Andres ; Roldán, Rafael ; Cappelluti, Emmanuele ; Buscema, Michele ; Guinea, Francisco ; van der Zant, Herre S. J ; Steele, Gary A</creatorcontrib><description>Controlling the bandstructure through local-strain engineering is an exciting avenue for tailoring optoelectronic properties of materials at the nanoscale. Atomically thin materials are particularly well-suited for this purpose because they can withstand extreme nonhomogeneous deformations before rupture. Here, we study the effect of large localized strain in the electronic bandstructure of atomically thin MoS2. Using photoluminescence imaging, we observe a strain-induced reduction of the direct bandgap and funneling of photogenerated excitons toward regions of higher strain. To understand these results, we develop a nonuniform tight-binding model to calculate the electronic properties of MoS2 nanolayers with complex and realistic local strain geometries, finding good agreement with our experimental results.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl402875m</identifier><identifier>PMID: 24083520</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Electron states ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Excitons and related phenomena ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Physics ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Nano letters, 2013-11, Vol.13 (11), p.5361-5366</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27998363$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24083520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castellanos-Gomez, Andres</creatorcontrib><creatorcontrib>Roldán, Rafael</creatorcontrib><creatorcontrib>Cappelluti, Emmanuele</creatorcontrib><creatorcontrib>Buscema, Michele</creatorcontrib><creatorcontrib>Guinea, Francisco</creatorcontrib><creatorcontrib>van der Zant, Herre S. J</creatorcontrib><creatorcontrib>Steele, Gary A</creatorcontrib><title>Local Strain Engineering in Atomically Thin MoS2</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Controlling the bandstructure through local-strain engineering is an exciting avenue for tailoring optoelectronic properties of materials at the nanoscale. Atomically thin materials are particularly well-suited for this purpose because they can withstand extreme nonhomogeneous deformations before rupture. Here, we study the effect of large localized strain in the electronic bandstructure of atomically thin MoS2. Using photoluminescence imaging, we observe a strain-induced reduction of the direct bandgap and funneling of photogenerated excitons toward regions of higher strain. To understand these results, we develop a nonuniform tight-binding model to calculate the electronic properties of MoS2 nanolayers with complex and realistic local strain geometries, finding good agreement with our experimental results.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electron states</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Excitons and related phenomena</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Physics</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EoqVw4A-gXJC4BPyM7WNVlYcUxKHlbNmxU1IlTrGTQ_89RpT2tDuaT6udAeAWwUcEMXryLYVYcNadgSliBOaFlPj8uAs6AVcxbiGEkjB4CSaYQkEYhlMAy77SbbYagm58tvSbxjsXGr_JkpwPfdcku91n66-k3_sVvgYXtW6juznMGfh8Xq4Xr3n58fK2mJe5JhwPeS0tJq52RmhTGY2YKUSh6wph6wpOkBECSWsoNRhTw9M_0lgLieYSCWwpmYGHv7u70H-PLg6qa2Ll2lZ7149RIcoEg0RgntC7Azqazlm1C02nw179p0zA_QHQMcWpg_ZVE08cl1KQgpw4XUW17cfgU0KFoPptWR1bJj_Sumn5</recordid><startdate>20131113</startdate><enddate>20131113</enddate><creator>Castellanos-Gomez, Andres</creator><creator>Roldán, Rafael</creator><creator>Cappelluti, Emmanuele</creator><creator>Buscema, Michele</creator><creator>Guinea, Francisco</creator><creator>van der Zant, Herre S. J</creator><creator>Steele, Gary A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20131113</creationdate><title>Local Strain Engineering in Atomically Thin MoS2</title><author>Castellanos-Gomez, Andres ; Roldán, Rafael ; Cappelluti, Emmanuele ; Buscema, Michele ; Guinea, Francisco ; van der Zant, Herre S. J ; Steele, Gary A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-f9d23efeb8abcba15b686afc12de6731b8819db44b224b74089bdd03a79182d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electron states</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Excitons and related phenomena</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Physics</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castellanos-Gomez, Andres</creatorcontrib><creatorcontrib>Roldán, Rafael</creatorcontrib><creatorcontrib>Cappelluti, Emmanuele</creatorcontrib><creatorcontrib>Buscema, Michele</creatorcontrib><creatorcontrib>Guinea, Francisco</creatorcontrib><creatorcontrib>van der Zant, Herre S. J</creatorcontrib><creatorcontrib>Steele, Gary A</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castellanos-Gomez, Andres</au><au>Roldán, Rafael</au><au>Cappelluti, Emmanuele</au><au>Buscema, Michele</au><au>Guinea, Francisco</au><au>van der Zant, Herre S. J</au><au>Steele, Gary A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Strain Engineering in Atomically Thin MoS2</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2013-11-13</date><risdate>2013</risdate><volume>13</volume><issue>11</issue><spage>5361</spage><epage>5366</epage><pages>5361-5366</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Controlling the bandstructure through local-strain engineering is an exciting avenue for tailoring optoelectronic properties of materials at the nanoscale. Atomically thin materials are particularly well-suited for this purpose because they can withstand extreme nonhomogeneous deformations before rupture. Here, we study the effect of large localized strain in the electronic bandstructure of atomically thin MoS2. Using photoluminescence imaging, we observe a strain-induced reduction of the direct bandgap and funneling of photogenerated excitons toward regions of higher strain. To understand these results, we develop a nonuniform tight-binding model to calculate the electronic properties of MoS2 nanolayers with complex and realistic local strain geometries, finding good agreement with our experimental results.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24083520</pmid><doi>10.1021/nl402875m</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2013-11, Vol.13 (11), p.5361-5366
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1458503827
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Electron states
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Excitons and related phenomena
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures
Physics
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title Local Strain Engineering in Atomically Thin MoS2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T05%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Strain%20Engineering%20in%20Atomically%20Thin%20MoS2&rft.jtitle=Nano%20letters&rft.au=Castellanos-Gomez,%20Andres&rft.date=2013-11-13&rft.volume=13&rft.issue=11&rft.spage=5361&rft.epage=5366&rft.pages=5361-5366&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl402875m&rft_dat=%3Cproquest_pubme%3E1458503827%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a372t-f9d23efeb8abcba15b686afc12de6731b8819db44b224b74089bdd03a79182d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1458503827&rft_id=info:pmid/24083520&rfr_iscdi=true