Loading…

RANKL subcellular trafficking and regulatory mechanisms in osteocytes

ABSTRACT The receptor activator of the NF‐κB ligand (RANKL) is the central player in the regulation of osteoclastogenesis, and the quantity of RANKL presented to osteoclast precursors is an important factor determining the magnitude of osteoclast formation. Because osteoblastic cells are thought to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bone and mineral research 2013-09, Vol.28 (9), p.1936-1949
Main Authors: Honma, Masashi, Ikebuchi, Yuki, Kariya, Yoshiaki, Hayashi, Madoka, Hayashi, Naoki, Aoki, Shigeki, Suzuki, Hiroshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4871-e83b63ff5b6bb16112e2e5e9ccfdaa3d6df7fc7fea2f1b2a7fa66e6e48e12bcd3
cites cdi_FETCH-LOGICAL-c4871-e83b63ff5b6bb16112e2e5e9ccfdaa3d6df7fc7fea2f1b2a7fa66e6e48e12bcd3
container_end_page 1949
container_issue 9
container_start_page 1936
container_title Journal of bone and mineral research
container_volume 28
creator Honma, Masashi
Ikebuchi, Yuki
Kariya, Yoshiaki
Hayashi, Madoka
Hayashi, Naoki
Aoki, Shigeki
Suzuki, Hiroshi
description ABSTRACT The receptor activator of the NF‐κB ligand (RANKL) is the central player in the regulation of osteoclastogenesis, and the quantity of RANKL presented to osteoclast precursors is an important factor determining the magnitude of osteoclast formation. Because osteoblastic cells are thought to be a major source of RANKL, the regulatory mechanisms of RANKL subcellular trafficking have been studied in osteoblastic cells. However, recent reports showed that osteocytes are a major source of RANKL presentation to osteoclast precursors, prompting a need to reinvestigate RANKL subcellular trafficking in osteocytes. Investigation of molecular mechanisms in detail needs well‐designed in vitro experimental systems. Thus, we developed a novel co‐culture system of osteoclast precursors and osteocytes embedded in collagen gel. Experiments using this model revealed that osteocytic RANKL is provided as a membrane‐bound form to osteoclast precursors through osteocyte dendritic processes and that the contribution of soluble RANKL to the osteoclastogenesis supported by osteocytes is minor. Moreover, the regulation of RANKL subcellular trafficking, such as OPG‐mediated transport of newly synthesized RANKL molecules to lysosomal storage compartments, and the release of RANKL to the cell surface upon stimulation with RANK are confirmed to be functional in osteocytes. These results provide a novel understanding of the regulation of osteoclastogenesis.
doi_str_mv 10.1002/jbmr.1941
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439218165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1426751622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4871-e83b63ff5b6bb16112e2e5e9ccfdaa3d6df7fc7fea2f1b2a7fa66e6e48e12bcd3</originalsourceid><addsrcrecordid>eNqN0ctKxDAUBuAgio6XhS8gBTe6qJOTtGm71MH7qDDoOiTpiXbsZUxapG9vx1EXguAqcPj4OSc_IftAT4BSNp7ryp1AFsEaGUHMeBiJFNbJiKZpFNKIwxbZ9n5OKRWxEJtki_GYZUnGR-R8dnp_Ow18pw2WZVcqF7ROWVuY16J-DlSdBw6fh3nbuD6o0LyouvCVD4o6aHyLjelb9Ltkw6rS497Xu0OeLs4fJ1fh9OHyenI6DU2UJhBiyrXg1sZaaA0CgCHDGDNjbK4Uz0VuE2sSi4pZ0EwlVgmBAqMUgWmT8x1ytMpduOatQ9_KqvDLxVWNTeclRDxjkIKI_0GZSGIQjA308BedN52rh0M-FbAUEj6o45UyrvHeoZULV1TK9RKoXNYglzXIZQ2DPfhK7HSF-Y_8_vcBjFfgvSix_ztJ3pzdzT4jPwBudZJh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426128173</pqid></control><display><type>article</type><title>RANKL subcellular trafficking and regulatory mechanisms in osteocytes</title><source>Wiley</source><creator>Honma, Masashi ; Ikebuchi, Yuki ; Kariya, Yoshiaki ; Hayashi, Madoka ; Hayashi, Naoki ; Aoki, Shigeki ; Suzuki, Hiroshi</creator><creatorcontrib>Honma, Masashi ; Ikebuchi, Yuki ; Kariya, Yoshiaki ; Hayashi, Madoka ; Hayashi, Naoki ; Aoki, Shigeki ; Suzuki, Hiroshi</creatorcontrib><description>ABSTRACT The receptor activator of the NF‐κB ligand (RANKL) is the central player in the regulation of osteoclastogenesis, and the quantity of RANKL presented to osteoclast precursors is an important factor determining the magnitude of osteoclast formation. Because osteoblastic cells are thought to be a major source of RANKL, the regulatory mechanisms of RANKL subcellular trafficking have been studied in osteoblastic cells. However, recent reports showed that osteocytes are a major source of RANKL presentation to osteoclast precursors, prompting a need to reinvestigate RANKL subcellular trafficking in osteocytes. Investigation of molecular mechanisms in detail needs well‐designed in vitro experimental systems. Thus, we developed a novel co‐culture system of osteoclast precursors and osteocytes embedded in collagen gel. Experiments using this model revealed that osteocytic RANKL is provided as a membrane‐bound form to osteoclast precursors through osteocyte dendritic processes and that the contribution of soluble RANKL to the osteoclastogenesis supported by osteocytes is minor. Moreover, the regulation of RANKL subcellular trafficking, such as OPG‐mediated transport of newly synthesized RANKL molecules to lysosomal storage compartments, and the release of RANKL to the cell surface upon stimulation with RANK are confirmed to be functional in osteocytes. These results provide a novel understanding of the regulation of osteoclastogenesis.</description><identifier>ISSN: 0884-0431</identifier><identifier>EISSN: 1523-4681</identifier><identifier>DOI: 10.1002/jbmr.1941</identifier><identifier>PMID: 23529793</identifier><identifier>CODEN: JBMREJ</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Bone Marrow Cells - cytology ; Bone Marrow Cells - drug effects ; Bone Marrow Cells - metabolism ; Cell Communication - drug effects ; Cell Culture Techniques ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Collagen - pharmacology ; Dendrites - drug effects ; Dendrites - metabolism ; Immune system ; Lysosomes - drug effects ; Lysosomes - metabolism ; Macrophages - cytology ; Macrophages - drug effects ; Mice ; Mice, Inbred C57BL ; Models, Biological ; OPG ; OSTEOCLASTOGENESIS ; Osteoclasts - cytology ; Osteoclasts - drug effects ; Osteoclasts - metabolism ; OSTEOCYTE ; Osteocytes - cytology ; Osteocytes - drug effects ; Osteocytes - metabolism ; Osteogenesis - drug effects ; Osteoprotegerin - metabolism ; Porosity ; Protein Transport - drug effects ; RANK Ligand - metabolism ; RANKL ; Regulation ; Rodents ; Subcellular Fractions - drug effects ; Subcellular Fractions - metabolism ; SUBCELLULAR TRAFFIC</subject><ispartof>Journal of bone and mineral research, 2013-09, Vol.28 (9), p.1936-1949</ispartof><rights>2013 American Society for Bone and Mineral Research</rights><rights>2013 American Society for Bone and Mineral Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4871-e83b63ff5b6bb16112e2e5e9ccfdaa3d6df7fc7fea2f1b2a7fa66e6e48e12bcd3</citedby><cites>FETCH-LOGICAL-c4871-e83b63ff5b6bb16112e2e5e9ccfdaa3d6df7fc7fea2f1b2a7fa66e6e48e12bcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbmr.1941$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbmr.1941$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23529793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Honma, Masashi</creatorcontrib><creatorcontrib>Ikebuchi, Yuki</creatorcontrib><creatorcontrib>Kariya, Yoshiaki</creatorcontrib><creatorcontrib>Hayashi, Madoka</creatorcontrib><creatorcontrib>Hayashi, Naoki</creatorcontrib><creatorcontrib>Aoki, Shigeki</creatorcontrib><creatorcontrib>Suzuki, Hiroshi</creatorcontrib><title>RANKL subcellular trafficking and regulatory mechanisms in osteocytes</title><title>Journal of bone and mineral research</title><addtitle>J Bone Miner Res</addtitle><description>ABSTRACT The receptor activator of the NF‐κB ligand (RANKL) is the central player in the regulation of osteoclastogenesis, and the quantity of RANKL presented to osteoclast precursors is an important factor determining the magnitude of osteoclast formation. Because osteoblastic cells are thought to be a major source of RANKL, the regulatory mechanisms of RANKL subcellular trafficking have been studied in osteoblastic cells. However, recent reports showed that osteocytes are a major source of RANKL presentation to osteoclast precursors, prompting a need to reinvestigate RANKL subcellular trafficking in osteocytes. Investigation of molecular mechanisms in detail needs well‐designed in vitro experimental systems. Thus, we developed a novel co‐culture system of osteoclast precursors and osteocytes embedded in collagen gel. Experiments using this model revealed that osteocytic RANKL is provided as a membrane‐bound form to osteoclast precursors through osteocyte dendritic processes and that the contribution of soluble RANKL to the osteoclastogenesis supported by osteocytes is minor. Moreover, the regulation of RANKL subcellular trafficking, such as OPG‐mediated transport of newly synthesized RANKL molecules to lysosomal storage compartments, and the release of RANKL to the cell surface upon stimulation with RANK are confirmed to be functional in osteocytes. These results provide a novel understanding of the regulation of osteoclastogenesis.</description><subject>Animals</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - drug effects</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cell Communication - drug effects</subject><subject>Cell Culture Techniques</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Collagen - pharmacology</subject><subject>Dendrites - drug effects</subject><subject>Dendrites - metabolism</subject><subject>Immune system</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Macrophages - cytology</subject><subject>Macrophages - drug effects</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Biological</subject><subject>OPG</subject><subject>OSTEOCLASTOGENESIS</subject><subject>Osteoclasts - cytology</subject><subject>Osteoclasts - drug effects</subject><subject>Osteoclasts - metabolism</subject><subject>OSTEOCYTE</subject><subject>Osteocytes - cytology</subject><subject>Osteocytes - drug effects</subject><subject>Osteocytes - metabolism</subject><subject>Osteogenesis - drug effects</subject><subject>Osteoprotegerin - metabolism</subject><subject>Porosity</subject><subject>Protein Transport - drug effects</subject><subject>RANK Ligand - metabolism</subject><subject>RANKL</subject><subject>Regulation</subject><subject>Rodents</subject><subject>Subcellular Fractions - drug effects</subject><subject>Subcellular Fractions - metabolism</subject><subject>SUBCELLULAR TRAFFIC</subject><issn>0884-0431</issn><issn>1523-4681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqN0ctKxDAUBuAgio6XhS8gBTe6qJOTtGm71MH7qDDoOiTpiXbsZUxapG9vx1EXguAqcPj4OSc_IftAT4BSNp7ryp1AFsEaGUHMeBiJFNbJiKZpFNKIwxbZ9n5OKRWxEJtki_GYZUnGR-R8dnp_Ow18pw2WZVcqF7ROWVuY16J-DlSdBw6fh3nbuD6o0LyouvCVD4o6aHyLjelb9Ltkw6rS497Xu0OeLs4fJ1fh9OHyenI6DU2UJhBiyrXg1sZaaA0CgCHDGDNjbK4Uz0VuE2sSi4pZ0EwlVgmBAqMUgWmT8x1ytMpduOatQ9_KqvDLxVWNTeclRDxjkIKI_0GZSGIQjA308BedN52rh0M-FbAUEj6o45UyrvHeoZULV1TK9RKoXNYglzXIZQ2DPfhK7HSF-Y_8_vcBjFfgvSix_ztJ3pzdzT4jPwBudZJh</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Honma, Masashi</creator><creator>Ikebuchi, Yuki</creator><creator>Kariya, Yoshiaki</creator><creator>Hayashi, Madoka</creator><creator>Hayashi, Naoki</creator><creator>Aoki, Shigeki</creator><creator>Suzuki, Hiroshi</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>201309</creationdate><title>RANKL subcellular trafficking and regulatory mechanisms in osteocytes</title><author>Honma, Masashi ; Ikebuchi, Yuki ; Kariya, Yoshiaki ; Hayashi, Madoka ; Hayashi, Naoki ; Aoki, Shigeki ; Suzuki, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4871-e83b63ff5b6bb16112e2e5e9ccfdaa3d6df7fc7fea2f1b2a7fa66e6e48e12bcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - drug effects</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cell Communication - drug effects</topic><topic>Cell Culture Techniques</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Collagen - pharmacology</topic><topic>Dendrites - drug effects</topic><topic>Dendrites - metabolism</topic><topic>Immune system</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Macrophages - cytology</topic><topic>Macrophages - drug effects</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Biological</topic><topic>OPG</topic><topic>OSTEOCLASTOGENESIS</topic><topic>Osteoclasts - cytology</topic><topic>Osteoclasts - drug effects</topic><topic>Osteoclasts - metabolism</topic><topic>OSTEOCYTE</topic><topic>Osteocytes - cytology</topic><topic>Osteocytes - drug effects</topic><topic>Osteocytes - metabolism</topic><topic>Osteogenesis - drug effects</topic><topic>Osteoprotegerin - metabolism</topic><topic>Porosity</topic><topic>Protein Transport - drug effects</topic><topic>RANK Ligand - metabolism</topic><topic>RANKL</topic><topic>Regulation</topic><topic>Rodents</topic><topic>Subcellular Fractions - drug effects</topic><topic>Subcellular Fractions - metabolism</topic><topic>SUBCELLULAR TRAFFIC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honma, Masashi</creatorcontrib><creatorcontrib>Ikebuchi, Yuki</creatorcontrib><creatorcontrib>Kariya, Yoshiaki</creatorcontrib><creatorcontrib>Hayashi, Madoka</creatorcontrib><creatorcontrib>Hayashi, Naoki</creatorcontrib><creatorcontrib>Aoki, Shigeki</creatorcontrib><creatorcontrib>Suzuki, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of bone and mineral research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honma, Masashi</au><au>Ikebuchi, Yuki</au><au>Kariya, Yoshiaki</au><au>Hayashi, Madoka</au><au>Hayashi, Naoki</au><au>Aoki, Shigeki</au><au>Suzuki, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RANKL subcellular trafficking and regulatory mechanisms in osteocytes</atitle><jtitle>Journal of bone and mineral research</jtitle><addtitle>J Bone Miner Res</addtitle><date>2013-09</date><risdate>2013</risdate><volume>28</volume><issue>9</issue><spage>1936</spage><epage>1949</epage><pages>1936-1949</pages><issn>0884-0431</issn><eissn>1523-4681</eissn><coden>JBMREJ</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>ObjectType-Article-2</notes><notes>ObjectType-Feature-1</notes><abstract>ABSTRACT The receptor activator of the NF‐κB ligand (RANKL) is the central player in the regulation of osteoclastogenesis, and the quantity of RANKL presented to osteoclast precursors is an important factor determining the magnitude of osteoclast formation. Because osteoblastic cells are thought to be a major source of RANKL, the regulatory mechanisms of RANKL subcellular trafficking have been studied in osteoblastic cells. However, recent reports showed that osteocytes are a major source of RANKL presentation to osteoclast precursors, prompting a need to reinvestigate RANKL subcellular trafficking in osteocytes. Investigation of molecular mechanisms in detail needs well‐designed in vitro experimental systems. Thus, we developed a novel co‐culture system of osteoclast precursors and osteocytes embedded in collagen gel. Experiments using this model revealed that osteocytic RANKL is provided as a membrane‐bound form to osteoclast precursors through osteocyte dendritic processes and that the contribution of soluble RANKL to the osteoclastogenesis supported by osteocytes is minor. Moreover, the regulation of RANKL subcellular trafficking, such as OPG‐mediated transport of newly synthesized RANKL molecules to lysosomal storage compartments, and the release of RANKL to the cell surface upon stimulation with RANK are confirmed to be functional in osteocytes. These results provide a novel understanding of the regulation of osteoclastogenesis.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>23529793</pmid><doi>10.1002/jbmr.1941</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-0431
ispartof Journal of bone and mineral research, 2013-09, Vol.28 (9), p.1936-1949
issn 0884-0431
1523-4681
language eng
recordid cdi_proquest_miscellaneous_1439218165
source Wiley
subjects Animals
Bone Marrow Cells - cytology
Bone Marrow Cells - drug effects
Bone Marrow Cells - metabolism
Cell Communication - drug effects
Cell Culture Techniques
Cell Membrane - drug effects
Cell Membrane - metabolism
Collagen - pharmacology
Dendrites - drug effects
Dendrites - metabolism
Immune system
Lysosomes - drug effects
Lysosomes - metabolism
Macrophages - cytology
Macrophages - drug effects
Mice
Mice, Inbred C57BL
Models, Biological
OPG
OSTEOCLASTOGENESIS
Osteoclasts - cytology
Osteoclasts - drug effects
Osteoclasts - metabolism
OSTEOCYTE
Osteocytes - cytology
Osteocytes - drug effects
Osteocytes - metabolism
Osteogenesis - drug effects
Osteoprotegerin - metabolism
Porosity
Protein Transport - drug effects
RANK Ligand - metabolism
RANKL
Regulation
Rodents
Subcellular Fractions - drug effects
Subcellular Fractions - metabolism
SUBCELLULAR TRAFFIC
title RANKL subcellular trafficking and regulatory mechanisms in osteocytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T06%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RANKL%20subcellular%20trafficking%20and%20regulatory%20mechanisms%20in%20osteocytes&rft.jtitle=Journal%20of%20bone%20and%20mineral%20research&rft.au=Honma,%20Masashi&rft.date=2013-09&rft.volume=28&rft.issue=9&rft.spage=1936&rft.epage=1949&rft.pages=1936-1949&rft.issn=0884-0431&rft.eissn=1523-4681&rft.coden=JBMREJ&rft_id=info:doi/10.1002/jbmr.1941&rft_dat=%3Cproquest_cross%3E1426751622%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4871-e83b63ff5b6bb16112e2e5e9ccfdaa3d6df7fc7fea2f1b2a7fa66e6e48e12bcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1426128173&rft_id=info:pmid/23529793&rfr_iscdi=true