Loading…
Numerical modeling of buried HDPE pipelines subjected to normal faulting; a case study
A systematic study is presented herein on the seismic response of buried pipelines subjected to ground fault rupture in the form of normal faulting. In this study, advanced computational simulations are conducted in parallel with physical testing using a geotechnical centrifuge. For the numerical si...
Saved in:
Published in: | Earthquake spectra 2013-05, Vol.29 (2), p.609-632 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a351t-3f0f5a627e77840817f640e5136f9dbc1efad900ea7dc78a3daeceeff2928a683 |
---|---|
cites | cdi_FETCH-LOGICAL-a351t-3f0f5a627e77840817f640e5136f9dbc1efad900ea7dc78a3daeceeff2928a683 |
container_end_page | 632 |
container_issue | 2 |
container_start_page | 609 |
container_title | Earthquake spectra |
container_volume | 29 |
creator | Xie, Xiaojian Symans, Michael D O'Rourke, Michael J Abdoun, Tarek H O'Rourke, Thomas D Palmer, Michael C Stewart, Harry E |
description | A systematic study is presented herein on the seismic response of buried pipelines subjected to ground fault rupture in the form of normal faulting. In this study, advanced computational simulations are conducted in parallel with physical testing using a geotechnical centrifuge. For the numerical simulations, the pipeline was modeled using isotropic 3-D shell elements and the soil was modeled using either 1-D spring elements or 3-D solid (continuum) elements. The results from continuum finite-element analyses are compared with those from a Winkler-type model (in which the pipe is supported by a series of discrete springs) and with results from centrifuge tests. In addition, via appropriate modeling of the soil-pipe interaction, the q-z relation of the soil medium is elucidated for normal faulting events. The numerical analysis results demonstrate the potential for continuum modeling of events that induce pipe-soil interaction and results in improved understanding of pipe-soil interaction under normal faulting. |
doi_str_mv | 10.1193/1.4000137 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417905849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417905849</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-3f0f5a627e77840817f640e5136f9dbc1efad900ea7dc78a3daeceeff2928a683</originalsourceid><addsrcrecordid>eNo9kEFr3DAQhUVpodskh_wDXQotwcmMZK8keipJmgSWJockV6GVR8GLbW0lm7D_Plp26Wlg5nuPeY-xc4RLRCOv8LIGAJTqE1ugqetKC8DPbKFV01TCSPjKvuW8KciygAv2-nceKHXe9XyILfXd-MZj4Os5ddTy-5unW77ttvs9ZZ7n9Yb8VA5T5GNMQ1EFN_dTUf3ijnuXiedpbnen7Etwfaaz4zxhL39un6_vq9Xj3cP171XlZINTJQOExi2FIqV0DRpVKG9Rg3IZTLv2SMG1BoCcar3STraOPFEIwgjtllqesB8H322K_2bKkx267Knv3UhxzhZrVAYaXZuC_jygPsWcEwW7Td3g0s4i2H13Fu2xu8J-P9q6XKoJyY2-y_8FQtUawew9Lw7cG8XsOxo9vcfUt3YT5zSW4FaAQAsgoAH5AWc3fHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417905849</pqid></control><display><type>article</type><title>Numerical modeling of buried HDPE pipelines subjected to normal faulting; a case study</title><source>Sage Journals Online</source><creator>Xie, Xiaojian ; Symans, Michael D ; O'Rourke, Michael J ; Abdoun, Tarek H ; O'Rourke, Thomas D ; Palmer, Michael C ; Stewart, Harry E</creator><creatorcontrib>Xie, Xiaojian ; Symans, Michael D ; O'Rourke, Michael J ; Abdoun, Tarek H ; O'Rourke, Thomas D ; Palmer, Michael C ; Stewart, Harry E</creatorcontrib><description>A systematic study is presented herein on the seismic response of buried pipelines subjected to ground fault rupture in the form of normal faulting. In this study, advanced computational simulations are conducted in parallel with physical testing using a geotechnical centrifuge. For the numerical simulations, the pipeline was modeled using isotropic 3-D shell elements and the soil was modeled using either 1-D spring elements or 3-D solid (continuum) elements. The results from continuum finite-element analyses are compared with those from a Winkler-type model (in which the pipe is supported by a series of discrete springs) and with results from centrifuge tests. In addition, via appropriate modeling of the soil-pipe interaction, the q-z relation of the soil medium is elucidated for normal faulting events. The numerical analysis results demonstrate the potential for continuum modeling of events that induce pipe-soil interaction and results in improved understanding of pipe-soil interaction under normal faulting.</description><identifier>ISSN: 8755-2930</identifier><identifier>EISSN: 1944-8201</identifier><identifier>DOI: 10.1193/1.4000137</identifier><identifier>CODEN: EASPEF</identifier><language>eng</language><publisher>Oakland, CA: Earthquake Engineering Research Institute</publisher><subject>bearing capacity ; case studies ; depth ; Earth sciences ; Earth, ocean, space ; earthquakes ; Earthquakes, seismology ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; fault planes ; faults ; finite element analysis ; foot wall ; hanging wall ; Internal geophysics ; Natural hazards: prediction, damages, etc ; normal faults ; numerical analysis ; numerical models ; pipelines ; rupture ; seismic response ; Seismology ; simulation ; soil-structure interface ; strain ; strength ; structures ; three-dimensional models ; underground installations ; Winkler-type model</subject><ispartof>Earthquake spectra, 2013-05, Vol.29 (2), p.609-632</ispartof><rights>GeoRef, Copyright 2021, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-3f0f5a627e77840817f640e5136f9dbc1efad900ea7dc78a3daeceeff2928a683</citedby><cites>FETCH-LOGICAL-a351t-3f0f5a627e77840817f640e5136f9dbc1efad900ea7dc78a3daeceeff2928a683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27481099$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Xiaojian</creatorcontrib><creatorcontrib>Symans, Michael D</creatorcontrib><creatorcontrib>O'Rourke, Michael J</creatorcontrib><creatorcontrib>Abdoun, Tarek H</creatorcontrib><creatorcontrib>O'Rourke, Thomas D</creatorcontrib><creatorcontrib>Palmer, Michael C</creatorcontrib><creatorcontrib>Stewart, Harry E</creatorcontrib><title>Numerical modeling of buried HDPE pipelines subjected to normal faulting; a case study</title><title>Earthquake spectra</title><description>A systematic study is presented herein on the seismic response of buried pipelines subjected to ground fault rupture in the form of normal faulting. In this study, advanced computational simulations are conducted in parallel with physical testing using a geotechnical centrifuge. For the numerical simulations, the pipeline was modeled using isotropic 3-D shell elements and the soil was modeled using either 1-D spring elements or 3-D solid (continuum) elements. The results from continuum finite-element analyses are compared with those from a Winkler-type model (in which the pipe is supported by a series of discrete springs) and with results from centrifuge tests. In addition, via appropriate modeling of the soil-pipe interaction, the q-z relation of the soil medium is elucidated for normal faulting events. The numerical analysis results demonstrate the potential for continuum modeling of events that induce pipe-soil interaction and results in improved understanding of pipe-soil interaction under normal faulting.</description><subject>bearing capacity</subject><subject>case studies</subject><subject>depth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>earthquakes</subject><subject>Earthquakes, seismology</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>fault planes</subject><subject>faults</subject><subject>finite element analysis</subject><subject>foot wall</subject><subject>hanging wall</subject><subject>Internal geophysics</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>normal faults</subject><subject>numerical analysis</subject><subject>numerical models</subject><subject>pipelines</subject><subject>rupture</subject><subject>seismic response</subject><subject>Seismology</subject><subject>simulation</subject><subject>soil-structure interface</subject><subject>strain</subject><subject>strength</subject><subject>structures</subject><subject>three-dimensional models</subject><subject>underground installations</subject><subject>Winkler-type model</subject><issn>8755-2930</issn><issn>1944-8201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kEFr3DAQhUVpodskh_wDXQotwcmMZK8keipJmgSWJockV6GVR8GLbW0lm7D_Plp26Wlg5nuPeY-xc4RLRCOv8LIGAJTqE1ugqetKC8DPbKFV01TCSPjKvuW8KciygAv2-nceKHXe9XyILfXd-MZj4Os5ddTy-5unW77ttvs9ZZ7n9Yb8VA5T5GNMQ1EFN_dTUf3ijnuXiedpbnen7Etwfaaz4zxhL39un6_vq9Xj3cP171XlZINTJQOExi2FIqV0DRpVKG9Rg3IZTLv2SMG1BoCcar3STraOPFEIwgjtllqesB8H322K_2bKkx267Knv3UhxzhZrVAYaXZuC_jygPsWcEwW7Td3g0s4i2H13Fu2xu8J-P9q6XKoJyY2-y_8FQtUawew9Lw7cG8XsOxo9vcfUt3YT5zSW4FaAQAsgoAH5AWc3fHs</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Xie, Xiaojian</creator><creator>Symans, Michael D</creator><creator>O'Rourke, Michael J</creator><creator>Abdoun, Tarek H</creator><creator>O'Rourke, Thomas D</creator><creator>Palmer, Michael C</creator><creator>Stewart, Harry E</creator><general>Earthquake Engineering Research Institute</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20130501</creationdate><title>Numerical modeling of buried HDPE pipelines subjected to normal faulting; a case study</title><author>Xie, Xiaojian ; Symans, Michael D ; O'Rourke, Michael J ; Abdoun, Tarek H ; O'Rourke, Thomas D ; Palmer, Michael C ; Stewart, Harry E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-3f0f5a627e77840817f640e5136f9dbc1efad900ea7dc78a3daeceeff2928a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>bearing capacity</topic><topic>case studies</topic><topic>depth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>earthquakes</topic><topic>Earthquakes, seismology</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>fault planes</topic><topic>faults</topic><topic>finite element analysis</topic><topic>foot wall</topic><topic>hanging wall</topic><topic>Internal geophysics</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>normal faults</topic><topic>numerical analysis</topic><topic>numerical models</topic><topic>pipelines</topic><topic>rupture</topic><topic>seismic response</topic><topic>Seismology</topic><topic>simulation</topic><topic>soil-structure interface</topic><topic>strain</topic><topic>strength</topic><topic>structures</topic><topic>three-dimensional models</topic><topic>underground installations</topic><topic>Winkler-type model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xiaojian</creatorcontrib><creatorcontrib>Symans, Michael D</creatorcontrib><creatorcontrib>O'Rourke, Michael J</creatorcontrib><creatorcontrib>Abdoun, Tarek H</creatorcontrib><creatorcontrib>O'Rourke, Thomas D</creatorcontrib><creatorcontrib>Palmer, Michael C</creatorcontrib><creatorcontrib>Stewart, Harry E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Earthquake spectra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xiaojian</au><au>Symans, Michael D</au><au>O'Rourke, Michael J</au><au>Abdoun, Tarek H</au><au>O'Rourke, Thomas D</au><au>Palmer, Michael C</au><au>Stewart, Harry E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling of buried HDPE pipelines subjected to normal faulting; a case study</atitle><jtitle>Earthquake spectra</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>29</volume><issue>2</issue><spage>609</spage><epage>632</epage><pages>609-632</pages><issn>8755-2930</issn><eissn>1944-8201</eissn><coden>EASPEF</coden><abstract>A systematic study is presented herein on the seismic response of buried pipelines subjected to ground fault rupture in the form of normal faulting. In this study, advanced computational simulations are conducted in parallel with physical testing using a geotechnical centrifuge. For the numerical simulations, the pipeline was modeled using isotropic 3-D shell elements and the soil was modeled using either 1-D spring elements or 3-D solid (continuum) elements. The results from continuum finite-element analyses are compared with those from a Winkler-type model (in which the pipe is supported by a series of discrete springs) and with results from centrifuge tests. In addition, via appropriate modeling of the soil-pipe interaction, the q-z relation of the soil medium is elucidated for normal faulting events. The numerical analysis results demonstrate the potential for continuum modeling of events that induce pipe-soil interaction and results in improved understanding of pipe-soil interaction under normal faulting.</abstract><cop>Oakland, CA</cop><pub>Earthquake Engineering Research Institute</pub><doi>10.1193/1.4000137</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8755-2930 |
ispartof | Earthquake spectra, 2013-05, Vol.29 (2), p.609-632 |
issn | 8755-2930 1944-8201 |
language | eng |
recordid | cdi_proquest_miscellaneous_1417905849 |
source | Sage Journals Online |
subjects | bearing capacity case studies depth Earth sciences Earth, ocean, space earthquakes Earthquakes, seismology Engineering and environment geology. Geothermics Engineering geology Exact sciences and technology fault planes faults finite element analysis foot wall hanging wall Internal geophysics Natural hazards: prediction, damages, etc normal faults numerical analysis numerical models pipelines rupture seismic response Seismology simulation soil-structure interface strain strength structures three-dimensional models underground installations Winkler-type model |
title | Numerical modeling of buried HDPE pipelines subjected to normal faulting; a case study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-12T02%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20of%20buried%20HDPE%20pipelines%20subjected%20to%20normal%20faulting;%20a%20case%20study&rft.jtitle=Earthquake%20spectra&rft.au=Xie,%20Xiaojian&rft.date=2013-05-01&rft.volume=29&rft.issue=2&rft.spage=609&rft.epage=632&rft.pages=609-632&rft.issn=8755-2930&rft.eissn=1944-8201&rft.coden=EASPEF&rft_id=info:doi/10.1193/1.4000137&rft_dat=%3Cproquest_cross%3E1417905849%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a351t-3f0f5a627e77840817f640e5136f9dbc1efad900ea7dc78a3daeceeff2928a683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1417905849&rft_id=info:pmid/&rfr_iscdi=true |