Loading…

Rice Husk: Raw Material in the Catalyst Preparation for Advanced Oxidative Processes Applied in the Industrial Effluent Treatment and from Acid Drainage of a Mine

Application of an agricultural residue (rice husk, RH) as a raw material for catalyst support for advanced oxidative processes (AOPs) was evaluated. The supported catalyst was produced by the calcination of TiCl 4 impregnated in RH, thereby providing a composite TiO 2 /Si-C, which was characterized...

Full description

Saved in:
Bibliographic Details
Published in:Water, air, and soil pollution air, and soil pollution, 2013, Vol.224 (1), p.1-11, Article 1396
Main Authors: Lattuada, R. M., Radtke, C., Peralba, M. C. R., Dos Santos, J. H. Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-ecf2a1e8f89a39d0170ce31cb94fd331c443273b7ff981602441ddb52a9e53493
cites cdi_FETCH-LOGICAL-c418t-ecf2a1e8f89a39d0170ce31cb94fd331c443273b7ff981602441ddb52a9e53493
container_end_page 11
container_issue 1
container_start_page 1
container_title Water, air, and soil pollution
container_volume 224
creator Lattuada, R. M.
Radtke, C.
Peralba, M. C. R.
Dos Santos, J. H. Z.
description Application of an agricultural residue (rice husk, RH) as a raw material for catalyst support for advanced oxidative processes (AOPs) was evaluated. The supported catalyst was produced by the calcination of TiCl 4 impregnated in RH, thereby providing a composite TiO 2 /Si-C, which was characterized by elemental analysis (CHN), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX), X-ray photoelectron spectroscopy (XPS), UV/VIS diffuse reflectance spectroscopic (DRS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), atomic force microscopy (AFM), SEM, and nitrogen adsorption–desorption isotherms (BET and BJH). Catalytic photodecomposition of methylene blue (MB), naphthalene, phenol, and abamectin and acid drainage of a mine by a titania-based catalyst composite were investigated. For comparative purposes, a commercial photocatalyst (TiO 2 ) was also employed. Photocatalytic degradation of MB, phenol, naphthalene, abamectin, and from coal mining effluent ranged from 8 to 93 % of the initial concentration. Performances of both catalysts were comparable. Additionally, in these evaluated systems, the toxicity of the effluent decreased after photocatalysis, either for Daphnia magna or for Scenedesmus subspicatus (employed as bioindicators).
doi_str_mv 10.1007/s11270-012-1396-x
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291617284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A335626776</galeid><sourcerecordid>A335626776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-ecf2a1e8f89a39d0170ce31cb94fd331c443273b7ff981602441ddb52a9e53493</originalsourceid><addsrcrecordid>eNp1kd9qFDEUxgdRcK0-gHcBEbyZmj8zk4l3y7baQkul1OvhbHKyps4mY5Kp29fxSc26i4hgzkUO5_y-jwNfVb1m9JRRKt8nxrikNWW8ZkJ19e5JtWCtFDVXgj-tFpQ2qu6UVM-rFynd0_JULxfVz1unkVzM6dsHcgs_yDVkjA5G4jzJX5GsIMP4mDL5HHGCCNkFT2yIZGkewGs05GbnTBk_YEGCxpQwkeU0ja7sjiaX3swp_7Y9t3ac0WdyFxHydt-BN8TGsCVL7Qw5i-A8bJAES4BcO48vq2cWxoSvjv9J9eXj-d3qor66-XS5Wl7VumF9rlFbDgx72ysQylAmqUbB9Fo11ojSNI3gUqyltapnHeVNw4xZtxwUtqJR4qR6d_CdYvg-Y8rD1iWN4wgew5wGxhXrmOR9U9A3_6D3YY6-XFeoru8lVaot1OmB2sCIg_M25Ai6lMGt08GjdWW-FKLteCdlVwTsINAxpBTRDlN0W4iPA6PDPubhEPNQYh72MQ-7onl7PAWShtHGkopLf4RcslbRbu_ND1wqK7_B-NfJ_zX_BUrnuAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1268870995</pqid></control><display><type>article</type><title>Rice Husk: Raw Material in the Catalyst Preparation for Advanced Oxidative Processes Applied in the Industrial Effluent Treatment and from Acid Drainage of a Mine</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><creator>Lattuada, R. M. ; Radtke, C. ; Peralba, M. C. R. ; Dos Santos, J. H. Z.</creator><creatorcontrib>Lattuada, R. M. ; Radtke, C. ; Peralba, M. C. R. ; Dos Santos, J. H. Z.</creatorcontrib><description>Application of an agricultural residue (rice husk, RH) as a raw material for catalyst support for advanced oxidative processes (AOPs) was evaluated. The supported catalyst was produced by the calcination of TiCl 4 impregnated in RH, thereby providing a composite TiO 2 /Si-C, which was characterized by elemental analysis (CHN), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX), X-ray photoelectron spectroscopy (XPS), UV/VIS diffuse reflectance spectroscopic (DRS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), atomic force microscopy (AFM), SEM, and nitrogen adsorption–desorption isotherms (BET and BJH). Catalytic photodecomposition of methylene blue (MB), naphthalene, phenol, and abamectin and acid drainage of a mine by a titania-based catalyst composite were investigated. For comparative purposes, a commercial photocatalyst (TiO 2 ) was also employed. Photocatalytic degradation of MB, phenol, naphthalene, abamectin, and from coal mining effluent ranged from 8 to 93 % of the initial concentration. Performances of both catalysts were comparable. Additionally, in these evaluated systems, the toxicity of the effluent decreased after photocatalysis, either for Daphnia magna or for Scenedesmus subspicatus (employed as bioindicators).</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1007/s11270-012-1396-x</identifier><identifier>CODEN: WAPLAC</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Abamectin ; Acidic wastes ; Adsorption ; Agriculture, rearing and food industries wastes ; Agronomy. Soil science and plant productions ; Analysis ; Applied sciences ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atomic force microscopy ; Bioindicators ; Biological and medical sciences ; Carbon ; Catalysts ; Climate Change/Climate Change Impacts ; Coal mining ; Crop residues ; Daphnia magna ; Drainage ; Earth and Environmental Science ; Effluent treatment ; Effluents ; Energy ; Environment ; Environmental monitoring ; Exact sciences and technology ; Food industries ; Fourier transforms ; Fundamental and applied biological sciences. Psychology ; Fungicides ; General agronomy. Plant production ; General purification processes ; Hydrogeology ; Indicator species ; Industrial effluents ; Industrial wastes ; Industrial wastewater ; Infrared spectroscopy ; Insecticides ; Methylene blue ; Naphthalene ; Oryza sativa ; Oxidation ; Phenols ; Photocatalysis ; Photodegradation ; Photoelectron spectroscopy ; Pollutants ; Pollution ; Production processes ; Purification ; Raw materials ; Reflectance ; Scanning electron microscopy ; Scenedesmus subspicatus ; Sewage ; Soil Science &amp; Conservation ; Spectrum analysis ; Studies ; Titanium dioxide ; Toxicity ; Ultraviolet radiation ; Use and upgrading of agricultural and food by-products. Biotechnology ; Use of agricultural and forest wastes. Biomass use, bioconversion ; Wastes ; Wastewater treatment ; Wastewaters ; Water Quality/Water Pollution ; Water treatment ; Water treatment and pollution ; X-ray spectroscopy</subject><ispartof>Water, air, and soil pollution, 2013, Vol.224 (1), p.1-11, Article 1396</ispartof><rights>Springer Science+Business Media Dordrecht 2012</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-ecf2a1e8f89a39d0170ce31cb94fd331c443273b7ff981602441ddb52a9e53493</citedby><cites>FETCH-LOGICAL-c418t-ecf2a1e8f89a39d0170ce31cb94fd331c443273b7ff981602441ddb52a9e53493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1268870995/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1268870995?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,786,790,4043,11715,27956,27957,27958,36095,36096,44398,75252</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27159066$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lattuada, R. M.</creatorcontrib><creatorcontrib>Radtke, C.</creatorcontrib><creatorcontrib>Peralba, M. C. R.</creatorcontrib><creatorcontrib>Dos Santos, J. H. Z.</creatorcontrib><title>Rice Husk: Raw Material in the Catalyst Preparation for Advanced Oxidative Processes Applied in the Industrial Effluent Treatment and from Acid Drainage of a Mine</title><title>Water, air, and soil pollution</title><addtitle>Water Air Soil Pollut</addtitle><description>Application of an agricultural residue (rice husk, RH) as a raw material for catalyst support for advanced oxidative processes (AOPs) was evaluated. The supported catalyst was produced by the calcination of TiCl 4 impregnated in RH, thereby providing a composite TiO 2 /Si-C, which was characterized by elemental analysis (CHN), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX), X-ray photoelectron spectroscopy (XPS), UV/VIS diffuse reflectance spectroscopic (DRS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), atomic force microscopy (AFM), SEM, and nitrogen adsorption–desorption isotherms (BET and BJH). Catalytic photodecomposition of methylene blue (MB), naphthalene, phenol, and abamectin and acid drainage of a mine by a titania-based catalyst composite were investigated. For comparative purposes, a commercial photocatalyst (TiO 2 ) was also employed. Photocatalytic degradation of MB, phenol, naphthalene, abamectin, and from coal mining effluent ranged from 8 to 93 % of the initial concentration. Performances of both catalysts were comparable. Additionally, in these evaluated systems, the toxicity of the effluent decreased after photocatalysis, either for Daphnia magna or for Scenedesmus subspicatus (employed as bioindicators).</description><subject>Abamectin</subject><subject>Acidic wastes</subject><subject>Adsorption</subject><subject>Agriculture, rearing and food industries wastes</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Analysis</subject><subject>Applied sciences</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atomic force microscopy</subject><subject>Bioindicators</subject><subject>Biological and medical sciences</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Coal mining</subject><subject>Crop residues</subject><subject>Daphnia magna</subject><subject>Drainage</subject><subject>Earth and Environmental Science</subject><subject>Effluent treatment</subject><subject>Effluents</subject><subject>Energy</subject><subject>Environment</subject><subject>Environmental monitoring</subject><subject>Exact sciences and technology</subject><subject>Food industries</subject><subject>Fourier transforms</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungicides</subject><subject>General agronomy. Plant production</subject><subject>General purification processes</subject><subject>Hydrogeology</subject><subject>Indicator species</subject><subject>Industrial effluents</subject><subject>Industrial wastes</subject><subject>Industrial wastewater</subject><subject>Infrared spectroscopy</subject><subject>Insecticides</subject><subject>Methylene blue</subject><subject>Naphthalene</subject><subject>Oryza sativa</subject><subject>Oxidation</subject><subject>Phenols</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Photoelectron spectroscopy</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>Production processes</subject><subject>Purification</subject><subject>Raw materials</subject><subject>Reflectance</subject><subject>Scanning electron microscopy</subject><subject>Scenedesmus subspicatus</subject><subject>Sewage</subject><subject>Soil Science &amp; Conservation</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Titanium dioxide</subject><subject>Toxicity</subject><subject>Ultraviolet radiation</subject><subject>Use and upgrading of agricultural and food by-products. Biotechnology</subject><subject>Use of agricultural and forest wastes. Biomass use, bioconversion</subject><subject>Wastes</subject><subject>Wastewater treatment</subject><subject>Wastewaters</subject><subject>Water Quality/Water Pollution</subject><subject>Water treatment</subject><subject>Water treatment and pollution</subject><subject>X-ray spectroscopy</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kd9qFDEUxgdRcK0-gHcBEbyZmj8zk4l3y7baQkul1OvhbHKyps4mY5Kp29fxSc26i4hgzkUO5_y-jwNfVb1m9JRRKt8nxrikNWW8ZkJ19e5JtWCtFDVXgj-tFpQ2qu6UVM-rFynd0_JULxfVz1unkVzM6dsHcgs_yDVkjA5G4jzJX5GsIMP4mDL5HHGCCNkFT2yIZGkewGs05GbnTBk_YEGCxpQwkeU0ja7sjiaX3swp_7Y9t3ac0WdyFxHydt-BN8TGsCVL7Qw5i-A8bJAES4BcO48vq2cWxoSvjv9J9eXj-d3qor66-XS5Wl7VumF9rlFbDgx72ysQylAmqUbB9Fo11ojSNI3gUqyltapnHeVNw4xZtxwUtqJR4qR6d_CdYvg-Y8rD1iWN4wgew5wGxhXrmOR9U9A3_6D3YY6-XFeoru8lVaot1OmB2sCIg_M25Ai6lMGt08GjdWW-FKLteCdlVwTsINAxpBTRDlN0W4iPA6PDPubhEPNQYh72MQ-7onl7PAWShtHGkopLf4RcslbRbu_ND1wqK7_B-NfJ_zX_BUrnuAY</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Lattuada, R. M.</creator><creator>Radtke, C.</creator><creator>Peralba, M. C. R.</creator><creator>Dos Santos, J. H. Z.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>2013</creationdate><title>Rice Husk: Raw Material in the Catalyst Preparation for Advanced Oxidative Processes Applied in the Industrial Effluent Treatment and from Acid Drainage of a Mine</title><author>Lattuada, R. M. ; Radtke, C. ; Peralba, M. C. R. ; Dos Santos, J. H. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-ecf2a1e8f89a39d0170ce31cb94fd331c443273b7ff981602441ddb52a9e53493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abamectin</topic><topic>Acidic wastes</topic><topic>Adsorption</topic><topic>Agriculture, rearing and food industries wastes</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Analysis</topic><topic>Applied sciences</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atomic force microscopy</topic><topic>Bioindicators</topic><topic>Biological and medical sciences</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Coal mining</topic><topic>Crop residues</topic><topic>Daphnia magna</topic><topic>Drainage</topic><topic>Earth and Environmental Science</topic><topic>Effluent treatment</topic><topic>Effluents</topic><topic>Energy</topic><topic>Environment</topic><topic>Environmental monitoring</topic><topic>Exact sciences and technology</topic><topic>Food industries</topic><topic>Fourier transforms</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungicides</topic><topic>General agronomy. Plant production</topic><topic>General purification processes</topic><topic>Hydrogeology</topic><topic>Indicator species</topic><topic>Industrial effluents</topic><topic>Industrial wastes</topic><topic>Industrial wastewater</topic><topic>Infrared spectroscopy</topic><topic>Insecticides</topic><topic>Methylene blue</topic><topic>Naphthalene</topic><topic>Oryza sativa</topic><topic>Oxidation</topic><topic>Phenols</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Photoelectron spectroscopy</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>Production processes</topic><topic>Purification</topic><topic>Raw materials</topic><topic>Reflectance</topic><topic>Scanning electron microscopy</topic><topic>Scenedesmus subspicatus</topic><topic>Sewage</topic><topic>Soil Science &amp; Conservation</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Titanium dioxide</topic><topic>Toxicity</topic><topic>Ultraviolet radiation</topic><topic>Use and upgrading of agricultural and food by-products. Biotechnology</topic><topic>Use of agricultural and forest wastes. Biomass use, bioconversion</topic><topic>Wastes</topic><topic>Wastewater treatment</topic><topic>Wastewaters</topic><topic>Water Quality/Water Pollution</topic><topic>Water treatment</topic><topic>Water treatment and pollution</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lattuada, R. M.</creatorcontrib><creatorcontrib>Radtke, C.</creatorcontrib><creatorcontrib>Peralba, M. C. R.</creatorcontrib><creatorcontrib>Dos Santos, J. H. Z.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lattuada, R. M.</au><au>Radtke, C.</au><au>Peralba, M. C. R.</au><au>Dos Santos, J. H. Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rice Husk: Raw Material in the Catalyst Preparation for Advanced Oxidative Processes Applied in the Industrial Effluent Treatment and from Acid Drainage of a Mine</atitle><jtitle>Water, air, and soil pollution</jtitle><stitle>Water Air Soil Pollut</stitle><date>2013</date><risdate>2013</risdate><volume>224</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>1396</artnum><issn>0049-6979</issn><eissn>1573-2932</eissn><coden>WAPLAC</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Application of an agricultural residue (rice husk, RH) as a raw material for catalyst support for advanced oxidative processes (AOPs) was evaluated. The supported catalyst was produced by the calcination of TiCl 4 impregnated in RH, thereby providing a composite TiO 2 /Si-C, which was characterized by elemental analysis (CHN), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX), X-ray photoelectron spectroscopy (XPS), UV/VIS diffuse reflectance spectroscopic (DRS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), atomic force microscopy (AFM), SEM, and nitrogen adsorption–desorption isotherms (BET and BJH). Catalytic photodecomposition of methylene blue (MB), naphthalene, phenol, and abamectin and acid drainage of a mine by a titania-based catalyst composite were investigated. For comparative purposes, a commercial photocatalyst (TiO 2 ) was also employed. Photocatalytic degradation of MB, phenol, naphthalene, abamectin, and from coal mining effluent ranged from 8 to 93 % of the initial concentration. Performances of both catalysts were comparable. Additionally, in these evaluated systems, the toxicity of the effluent decreased after photocatalysis, either for Daphnia magna or for Scenedesmus subspicatus (employed as bioindicators).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11270-012-1396-x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0049-6979
ispartof Water, air, and soil pollution, 2013, Vol.224 (1), p.1-11, Article 1396
issn 0049-6979
1573-2932
language eng
recordid cdi_proquest_miscellaneous_1291617284
source ABI/INFORM Global (ProQuest); Springer Link
subjects Abamectin
Acidic wastes
Adsorption
Agriculture, rearing and food industries wastes
Agronomy. Soil science and plant productions
Analysis
Applied sciences
Atmospheric Protection/Air Quality Control/Air Pollution
Atomic force microscopy
Bioindicators
Biological and medical sciences
Carbon
Catalysts
Climate Change/Climate Change Impacts
Coal mining
Crop residues
Daphnia magna
Drainage
Earth and Environmental Science
Effluent treatment
Effluents
Energy
Environment
Environmental monitoring
Exact sciences and technology
Food industries
Fourier transforms
Fundamental and applied biological sciences. Psychology
Fungicides
General agronomy. Plant production
General purification processes
Hydrogeology
Indicator species
Industrial effluents
Industrial wastes
Industrial wastewater
Infrared spectroscopy
Insecticides
Methylene blue
Naphthalene
Oryza sativa
Oxidation
Phenols
Photocatalysis
Photodegradation
Photoelectron spectroscopy
Pollutants
Pollution
Production processes
Purification
Raw materials
Reflectance
Scanning electron microscopy
Scenedesmus subspicatus
Sewage
Soil Science & Conservation
Spectrum analysis
Studies
Titanium dioxide
Toxicity
Ultraviolet radiation
Use and upgrading of agricultural and food by-products. Biotechnology
Use of agricultural and forest wastes. Biomass use, bioconversion
Wastes
Wastewater treatment
Wastewaters
Water Quality/Water Pollution
Water treatment
Water treatment and pollution
X-ray spectroscopy
title Rice Husk: Raw Material in the Catalyst Preparation for Advanced Oxidative Processes Applied in the Industrial Effluent Treatment and from Acid Drainage of a Mine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T22%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rice%20Husk:%20Raw%20Material%20in%20the%20Catalyst%20Preparation%20for%20Advanced%20Oxidative%20Processes%20Applied%20in%20the%20Industrial%20Effluent%20Treatment%20and%20from%20Acid%20Drainage%20of%20a%20Mine&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=Lattuada,%20R.%20M.&rft.date=2013&rft.volume=224&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=1396&rft.issn=0049-6979&rft.eissn=1573-2932&rft.coden=WAPLAC&rft_id=info:doi/10.1007/s11270-012-1396-x&rft_dat=%3Cgale_proqu%3EA335626776%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-ecf2a1e8f89a39d0170ce31cb94fd331c443273b7ff981602441ddb52a9e53493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1268870995&rft_id=info:pmid/&rft_galeid=A335626776&rfr_iscdi=true