Loading…

Ferrate(VI) oxidation of propranolol: Kinetics and products

► Reaction kinetics of Fe(VI) and propranolol is similar to secondary amines. ► Complete transformation of propranolol by Fe(VI) in water. ► Opening of aromatic ring of propranolol by Fe(VI). ► Hydroxylation of amine moiety of propranolol by Fe(VI). The oxidation of propranolol (PPL), a β-blocker by...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) 2013-03, Vol.91 (1), p.105-109
Main Authors: Anquandah, George A.K., Sharma, Virender K., Panditi, Venkata R., Gardinali, Piero R., Kim, Hyunook, Oturan, Mehmet A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c431t-8df35e3388797a0d5b785d66b4d7d36dda7b7b4aba34a7296edb7fbe0ff4c4763
cites cdi_FETCH-LOGICAL-c431t-8df35e3388797a0d5b785d66b4d7d36dda7b7b4aba34a7296edb7fbe0ff4c4763
container_end_page 109
container_issue 1
container_start_page 105
container_title Chemosphere (Oxford)
container_volume 91
creator Anquandah, George A.K.
Sharma, Virender K.
Panditi, Venkata R.
Gardinali, Piero R.
Kim, Hyunook
Oturan, Mehmet A.
description ► Reaction kinetics of Fe(VI) and propranolol is similar to secondary amines. ► Complete transformation of propranolol by Fe(VI) in water. ► Opening of aromatic ring of propranolol by Fe(VI). ► Hydroxylation of amine moiety of propranolol by Fe(VI). The oxidation of propranolol (PPL), a β-blocker by ferrate(VI) (Fe(VI)) was studied by performing kinetics, stoichiometry, and analysis of the reaction products. The rate law for the oxidation of PPL by Fe(VI) was first-order with respect to each reactant. The dependence of second-order rate constants of the reaction of Fe(VI) and PPL on pH was explained using acid–base equilibrium of Fe(VI) and PPL. The required molar stoichiometry for the complete removal of PPL was determined to be 6:1 ([Fe(VI)]:[PPL]). The identified products using liquid chromatography–tandem mass spectrometry were oxidized product (OP)-292, OP-308, and OP-282. The formed OPs could possibly compete with the parent molecule to react with Fe(VI) and thus resulted in a non-linear relationship between degradation of PPL and the added amount of Fe(VI). Rate and removal studies indicate the Fe(VI) is able to oxidize PPL and hence can also oxidize other β-blockers, e.g., atenolol and metoprolol.
doi_str_mv 10.1016/j.chemosphere.2012.12.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1288993598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653512014774</els_id><sourcerecordid>1288993598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-8df35e3388797a0d5b785d66b4d7d36dda7b7b4aba34a7296edb7fbe0ff4c4763</originalsourceid><addsrcrecordid>eNqNkc1uEzEUhS0EoqHwCjAsKpXFBP__wKqKKK2oxALK1vLY19TRZJzaEwRvj6MEyhLJkhf-js_VdxF6TfCSYCLfrpf-Dja5bu-gwJJiQpftYEweoQXRyvSEGv0YLTDmopeCiRP0rNY1boQU5ik6oYxhobheoPeXUIqb4fzb9Zsu_0zBzSlPXY7dtuRtcVMe8_iu-5QmmJOvnZvC_iXs_FyfoyfRjRVeHO9TdHv54evqqr_5_PF6dXHTe87I3OsQmQDGdJtMORzEoLQIUg48qMBkCE4NauBucIw7RY2EMKg4AI6Re64kO0Xnh39b8f0O6mw3qXoYRzdB3lVLqNbGMGF0Q80B9SXXWiDabUkbV35Zgu3enV3bf9zZvbuWt81My7481uyGDYS_yT-yGnB2BFz1bozNjk_1gZOGciNp414duOiydd9LY26_tCbRFiCp0qoRqwMBTduPBMVWn2DyEFIBP9uQ038M_BtSLJv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288993598</pqid></control><display><type>article</type><title>Ferrate(VI) oxidation of propranolol: Kinetics and products</title><source>ScienceDirect Freedom Collection</source><creator>Anquandah, George A.K. ; Sharma, Virender K. ; Panditi, Venkata R. ; Gardinali, Piero R. ; Kim, Hyunook ; Oturan, Mehmet A.</creator><creatorcontrib>Anquandah, George A.K. ; Sharma, Virender K. ; Panditi, Venkata R. ; Gardinali, Piero R. ; Kim, Hyunook ; Oturan, Mehmet A.</creatorcontrib><description>► Reaction kinetics of Fe(VI) and propranolol is similar to secondary amines. ► Complete transformation of propranolol by Fe(VI) in water. ► Opening of aromatic ring of propranolol by Fe(VI). ► Hydroxylation of amine moiety of propranolol by Fe(VI). The oxidation of propranolol (PPL), a β-blocker by ferrate(VI) (Fe(VI)) was studied by performing kinetics, stoichiometry, and analysis of the reaction products. The rate law for the oxidation of PPL by Fe(VI) was first-order with respect to each reactant. The dependence of second-order rate constants of the reaction of Fe(VI) and PPL on pH was explained using acid–base equilibrium of Fe(VI) and PPL. The required molar stoichiometry for the complete removal of PPL was determined to be 6:1 ([Fe(VI)]:[PPL]). The identified products using liquid chromatography–tandem mass spectrometry were oxidized product (OP)-292, OP-308, and OP-282. The formed OPs could possibly compete with the parent molecule to react with Fe(VI) and thus resulted in a non-linear relationship between degradation of PPL and the added amount of Fe(VI). Rate and removal studies indicate the Fe(VI) is able to oxidize PPL and hence can also oxidize other β-blockers, e.g., atenolol and metoprolol.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2012.12.001</identifier><identifier>PMID: 23305748</identifier><identifier>CODEN: CMSHAF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adrenergic beta-Antagonists - analysis ; Adrenergic beta-Antagonists - chemistry ; Applied sciences ; Beta blockers ; beta-adrenergic antagonists ; Environmental Pollutants - analysis ; Environmental Pollutants - chemistry ; Exact sciences and technology ; Ferrate ; General purification processes ; iron ; Iron - chemistry ; Kinetics ; mass spectrometry ; Models, Chemical ; oxidation ; Oxidation-Reduction ; Oxidized products ; Pollution ; propranolol ; Propranolol - analysis ; Propranolol - chemistry ; Removal ; stoichiometry ; Wastewaters ; Water treatment and pollution</subject><ispartof>Chemosphere (Oxford), 2013-03, Vol.91 (1), p.105-109</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-8df35e3388797a0d5b785d66b4d7d36dda7b7b4aba34a7296edb7fbe0ff4c4763</citedby><cites>FETCH-LOGICAL-c431t-8df35e3388797a0d5b785d66b4d7d36dda7b7b4aba34a7296edb7fbe0ff4c4763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26924962$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23305748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anquandah, George A.K.</creatorcontrib><creatorcontrib>Sharma, Virender K.</creatorcontrib><creatorcontrib>Panditi, Venkata R.</creatorcontrib><creatorcontrib>Gardinali, Piero R.</creatorcontrib><creatorcontrib>Kim, Hyunook</creatorcontrib><creatorcontrib>Oturan, Mehmet A.</creatorcontrib><title>Ferrate(VI) oxidation of propranolol: Kinetics and products</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>► Reaction kinetics of Fe(VI) and propranolol is similar to secondary amines. ► Complete transformation of propranolol by Fe(VI) in water. ► Opening of aromatic ring of propranolol by Fe(VI). ► Hydroxylation of amine moiety of propranolol by Fe(VI). The oxidation of propranolol (PPL), a β-blocker by ferrate(VI) (Fe(VI)) was studied by performing kinetics, stoichiometry, and analysis of the reaction products. The rate law for the oxidation of PPL by Fe(VI) was first-order with respect to each reactant. The dependence of second-order rate constants of the reaction of Fe(VI) and PPL on pH was explained using acid–base equilibrium of Fe(VI) and PPL. The required molar stoichiometry for the complete removal of PPL was determined to be 6:1 ([Fe(VI)]:[PPL]). The identified products using liquid chromatography–tandem mass spectrometry were oxidized product (OP)-292, OP-308, and OP-282. The formed OPs could possibly compete with the parent molecule to react with Fe(VI) and thus resulted in a non-linear relationship between degradation of PPL and the added amount of Fe(VI). Rate and removal studies indicate the Fe(VI) is able to oxidize PPL and hence can also oxidize other β-blockers, e.g., atenolol and metoprolol.</description><subject>Adrenergic beta-Antagonists - analysis</subject><subject>Adrenergic beta-Antagonists - chemistry</subject><subject>Applied sciences</subject><subject>Beta blockers</subject><subject>beta-adrenergic antagonists</subject><subject>Environmental Pollutants - analysis</subject><subject>Environmental Pollutants - chemistry</subject><subject>Exact sciences and technology</subject><subject>Ferrate</subject><subject>General purification processes</subject><subject>iron</subject><subject>Iron - chemistry</subject><subject>Kinetics</subject><subject>mass spectrometry</subject><subject>Models, Chemical</subject><subject>oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidized products</subject><subject>Pollution</subject><subject>propranolol</subject><subject>Propranolol - analysis</subject><subject>Propranolol - chemistry</subject><subject>Removal</subject><subject>stoichiometry</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkc1uEzEUhS0EoqHwCjAsKpXFBP__wKqKKK2oxALK1vLY19TRZJzaEwRvj6MEyhLJkhf-js_VdxF6TfCSYCLfrpf-Dja5bu-gwJJiQpftYEweoQXRyvSEGv0YLTDmopeCiRP0rNY1boQU5ik6oYxhobheoPeXUIqb4fzb9Zsu_0zBzSlPXY7dtuRtcVMe8_iu-5QmmJOvnZvC_iXs_FyfoyfRjRVeHO9TdHv54evqqr_5_PF6dXHTe87I3OsQmQDGdJtMORzEoLQIUg48qMBkCE4NauBucIw7RY2EMKg4AI6Re64kO0Xnh39b8f0O6mw3qXoYRzdB3lVLqNbGMGF0Q80B9SXXWiDabUkbV35Zgu3enV3bf9zZvbuWt81My7481uyGDYS_yT-yGnB2BFz1bozNjk_1gZOGciNp414duOiydd9LY26_tCbRFiCp0qoRqwMBTduPBMVWn2DyEFIBP9uQ038M_BtSLJv8</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Anquandah, George A.K.</creator><creator>Sharma, Virender K.</creator><creator>Panditi, Venkata R.</creator><creator>Gardinali, Piero R.</creator><creator>Kim, Hyunook</creator><creator>Oturan, Mehmet A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130301</creationdate><title>Ferrate(VI) oxidation of propranolol: Kinetics and products</title><author>Anquandah, George A.K. ; Sharma, Virender K. ; Panditi, Venkata R. ; Gardinali, Piero R. ; Kim, Hyunook ; Oturan, Mehmet A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-8df35e3388797a0d5b785d66b4d7d36dda7b7b4aba34a7296edb7fbe0ff4c4763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adrenergic beta-Antagonists - analysis</topic><topic>Adrenergic beta-Antagonists - chemistry</topic><topic>Applied sciences</topic><topic>Beta blockers</topic><topic>beta-adrenergic antagonists</topic><topic>Environmental Pollutants - analysis</topic><topic>Environmental Pollutants - chemistry</topic><topic>Exact sciences and technology</topic><topic>Ferrate</topic><topic>General purification processes</topic><topic>iron</topic><topic>Iron - chemistry</topic><topic>Kinetics</topic><topic>mass spectrometry</topic><topic>Models, Chemical</topic><topic>oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidized products</topic><topic>Pollution</topic><topic>propranolol</topic><topic>Propranolol - analysis</topic><topic>Propranolol - chemistry</topic><topic>Removal</topic><topic>stoichiometry</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anquandah, George A.K.</creatorcontrib><creatorcontrib>Sharma, Virender K.</creatorcontrib><creatorcontrib>Panditi, Venkata R.</creatorcontrib><creatorcontrib>Gardinali, Piero R.</creatorcontrib><creatorcontrib>Kim, Hyunook</creatorcontrib><creatorcontrib>Oturan, Mehmet A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anquandah, George A.K.</au><au>Sharma, Virender K.</au><au>Panditi, Venkata R.</au><au>Gardinali, Piero R.</au><au>Kim, Hyunook</au><au>Oturan, Mehmet A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferrate(VI) oxidation of propranolol: Kinetics and products</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>91</volume><issue>1</issue><spage>105</spage><epage>109</epage><pages>105-109</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><coden>CMSHAF</coden><notes>http://dx.doi.org/10.1016/j.chemosphere.2012.12.001</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>► Reaction kinetics of Fe(VI) and propranolol is similar to secondary amines. ► Complete transformation of propranolol by Fe(VI) in water. ► Opening of aromatic ring of propranolol by Fe(VI). ► Hydroxylation of amine moiety of propranolol by Fe(VI). The oxidation of propranolol (PPL), a β-blocker by ferrate(VI) (Fe(VI)) was studied by performing kinetics, stoichiometry, and analysis of the reaction products. The rate law for the oxidation of PPL by Fe(VI) was first-order with respect to each reactant. The dependence of second-order rate constants of the reaction of Fe(VI) and PPL on pH was explained using acid–base equilibrium of Fe(VI) and PPL. The required molar stoichiometry for the complete removal of PPL was determined to be 6:1 ([Fe(VI)]:[PPL]). The identified products using liquid chromatography–tandem mass spectrometry were oxidized product (OP)-292, OP-308, and OP-282. The formed OPs could possibly compete with the parent molecule to react with Fe(VI) and thus resulted in a non-linear relationship between degradation of PPL and the added amount of Fe(VI). Rate and removal studies indicate the Fe(VI) is able to oxidize PPL and hence can also oxidize other β-blockers, e.g., atenolol and metoprolol.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23305748</pmid><doi>10.1016/j.chemosphere.2012.12.001</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2013-03, Vol.91 (1), p.105-109
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_1288993598
source ScienceDirect Freedom Collection
subjects Adrenergic beta-Antagonists - analysis
Adrenergic beta-Antagonists - chemistry
Applied sciences
Beta blockers
beta-adrenergic antagonists
Environmental Pollutants - analysis
Environmental Pollutants - chemistry
Exact sciences and technology
Ferrate
General purification processes
iron
Iron - chemistry
Kinetics
mass spectrometry
Models, Chemical
oxidation
Oxidation-Reduction
Oxidized products
Pollution
propranolol
Propranolol - analysis
Propranolol - chemistry
Removal
stoichiometry
Wastewaters
Water treatment and pollution
title Ferrate(VI) oxidation of propranolol: Kinetics and products
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T05%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferrate(VI)%20oxidation%20of%20propranolol:%20Kinetics%20and%20products&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Anquandah,%20George%20A.K.&rft.date=2013-03-01&rft.volume=91&rft.issue=1&rft.spage=105&rft.epage=109&rft.pages=105-109&rft.issn=0045-6535&rft.eissn=1879-1298&rft.coden=CMSHAF&rft_id=info:doi/10.1016/j.chemosphere.2012.12.001&rft_dat=%3Cproquest_cross%3E1288993598%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-8df35e3388797a0d5b785d66b4d7d36dda7b7b4aba34a7296edb7fbe0ff4c4763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1288993598&rft_id=info:pmid/23305748&rfr_iscdi=true