Loading…

An Autocalibrating Inductance Model for Switched Reluctance Motor Drives

Development of a precise dynamic model is a critical step in design and analysis of optimal control strategies for switched-reluctance machines (SRM). This paper is focused on important issues concerning the development of such models and their subsequent use in designing control strategies for SRM...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2007-08, Vol.54 (4), p.2165-2173
Main Authors: Edrington, C.S., Fahimi, B., Krishnamurthy, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Development of a precise dynamic model is a critical step in design and analysis of optimal control strategies for switched-reluctance machines (SRM). This paper is focused on important issues concerning the development of such models and their subsequent use in designing control strategies for SRM drives. The main goal in modeling is to provide a good accuracy over the entire speed and torque range. To achieve this objective, the following requirements need to be met: 1) a good accuracy in matching the inductance of each stator phase; 2) inclusion of mutual effects when significant overlap among phases exists; 3) inclusion of short flux-path operation in each electrical cycle when significant overlap among adjacent phases exists; and 4) capability for autocalibration to cope with parameter variations incurred by manufacturing imperfections and operational conditions. In this paper, in addition to an in-depth discussion of the above factors, a practical modeling approach along with an autocalibration strategy is presented. A simple test collects the necessary data in developing the proposed model. Inherent separation among mechanical, electrical, and control time constants has been used to develop the autocalibration process. Experimental results are presented to validate the proposed method.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2007.895118