Loading…

Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure

The HIV-1 spike is a trimer of the transmembrane gp41 and the peripheral gp120 subunit pair. It is activated for virus–cell membrane fusion by binding sequentially to CD4 and to a chemokine receptor. Here we have studied the structural transition of the trimeric spike during the activation process....

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (44), p.18844-18849
Main Authors: Wu, Shang-Rung, Löving, Robin, Lindqvist, Birgitta, Hebert, Hans, Koeck, Philip J. B., Sjöberg, Mathilda, Garoff, Henrik, Goff, Stephen P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c685t-18abe75866870f917102690e4b4c9c627aec5ac1dfbd512c1820151bf0628dea3
cites cdi_FETCH-LOGICAL-c685t-18abe75866870f917102690e4b4c9c627aec5ac1dfbd512c1820151bf0628dea3
container_end_page 18849
container_issue 44
container_start_page 18844
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Wu, Shang-Rung
Löving, Robin
Lindqvist, Birgitta
Hebert, Hans
Koeck, Philip J. B.
Sjöberg, Mathilda
Garoff, Henrik
Goff, Stephen P.
description The HIV-1 spike is a trimer of the transmembrane gp41 and the peripheral gp120 subunit pair. It is activated for virus–cell membrane fusion by binding sequentially to CD4 and to a chemokine receptor. Here we have studied the structural transition of the trimeric spike during the activation process. We solubilized and isolated unliganded and CD4-bound spikes from virus-like particles and used cryoelectron microscopy to reconstruct their 3D structures. In order to increase the yield and stability of the spike, we used an endodomain deleted and gp120-gp41 disulfide-linked variant. The unliganded spike displayed a hollow cage-like structure where the gp120-gp41 protomeric units formed a roof and bottom, and separated lobes and legs on the sides. The tripod structure was verified by fitting the recent atomic core structure of gp120 with intact N- and C-terminal ends into the spike density map. This defined the lobe as gp120 core, showed that the legs contained the polypeptide termini, and suggested the deleted variable loops V1/V2 and V3 to occupy the roof and gp41 the bottom. CD4 binding shifted the roof density peripherally and condensed the bottom density centrally. Fitting with a V3 containing gp120 core suggested that the V1/V2 loops in the roof were displaced laterally and the V3 lifted up, while the core and leg were kept in place. The loop displacements probably prepared the spike for coreceptor interaction and roof opening so that a new fusion-active gp41 structure, assembled at the center of the cage bottom, could reach the target membrane.
doi_str_mv 10.1073/pnas.1007227107
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_762717498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25748584</jstor_id><sourcerecordid>25748584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c685t-18abe75866870f917102690e4b4c9c627aec5ac1dfbd512c1820151bf0628dea3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEokvhzAlkcYEDobbj-OOCVJWPVqrEAegRy3Fmd72bjVPbKdp_j8MuXYoE4mB5NH7mHc34LYqnBL8hWFQnQ29ijrCgVOTEvWJGsCIlZwrfL2YYU1FKRtlR8SjGFcZY1RI_LI5oDnhV8Vnx7bPrFx2UgwnJ2Q6QDVsPHdgUfI82zgYfrR-2yPSm20YXUYAbMF1EaQno_OKqJCgObg3IRGRQCm7wLYopjDaNAR4XD-YZhif7-7j4-uH9l7Pz8vLTx4uz08vSclmnkkjTgKgl51LguSJ5FsoVBtYwqyynwoCtjSXtvGlrQi2RFJOaNHPMqWzBVMeF2unG7zCMjR6C25iw1d64HPtW7_NrNx0dQRNK6opwKXPt67_WvnNXp9qHhV6npZZUVSzjb3d4ZjfQWuhTMN3djndeerfUC3-jqRKVFFO_l3uB4K9HiElvXLTQdaYHP0YtOGUSMzaRr_5J5i1hWWW8-l-UcJXRF3-gKz-G_L0_WwsimJpan-ygyQAxwPx2QIL1ZD09WU8frJcrnv--l1v-l9cygPbAVHmQE5oxTaRk026f7ZBVTD4cJGrBZC1Z9QMQUeoo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762717498</pqid></control><display><type>article</type><title>Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Wu, Shang-Rung ; Löving, Robin ; Lindqvist, Birgitta ; Hebert, Hans ; Koeck, Philip J. B. ; Sjöberg, Mathilda ; Garoff, Henrik ; Goff, Stephen P.</creator><creatorcontrib>Wu, Shang-Rung ; Löving, Robin ; Lindqvist, Birgitta ; Hebert, Hans ; Koeck, Philip J. B. ; Sjöberg, Mathilda ; Garoff, Henrik ; Goff, Stephen P.</creatorcontrib><description>The HIV-1 spike is a trimer of the transmembrane gp41 and the peripheral gp120 subunit pair. It is activated for virus–cell membrane fusion by binding sequentially to CD4 and to a chemokine receptor. Here we have studied the structural transition of the trimeric spike during the activation process. We solubilized and isolated unliganded and CD4-bound spikes from virus-like particles and used cryoelectron microscopy to reconstruct their 3D structures. In order to increase the yield and stability of the spike, we used an endodomain deleted and gp120-gp41 disulfide-linked variant. The unliganded spike displayed a hollow cage-like structure where the gp120-gp41 protomeric units formed a roof and bottom, and separated lobes and legs on the sides. The tripod structure was verified by fitting the recent atomic core structure of gp120 with intact N- and C-terminal ends into the spike density map. This defined the lobe as gp120 core, showed that the legs contained the polypeptide termini, and suggested the deleted variable loops V1/V2 and V3 to occupy the roof and gp41 the bottom. CD4 binding shifted the roof density peripherally and condensed the bottom density centrally. Fitting with a V3 containing gp120 core suggested that the V1/V2 loops in the roof were displaced laterally and the V3 lifted up, while the core and leg were kept in place. The loop displacements probably prepared the spike for coreceptor interaction and roof opening so that a new fusion-active gp41 structure, assembled at the center of the cage bottom, could reach the target membrane.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1007227107</identifier><identifier>PMID: 20956336</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Atomic structure ; Binding sites ; Biochemistry ; Biological Sciences ; CD4 antigen ; CD4 Antigens ; Cell membranes ; Chemokine receptors ; cryo-EM ; Cryoelectron Microscopy ; Cytokines ; Electron microscopes ; EMAN ; Glycoprotein gp120 ; glycoprotein gp41 ; Glycoproteins ; HIV ; HIV 1 ; HIV Envelope Protein gp120 ; HIV Envelope Protein gp41 ; HIV-1 - chemistry ; HIV-1 - ultrastructure ; Human immunodeficiency virus ; Human immunodeficiency virus 1 ; Humans ; Imaging, Three-Dimensional ; Leg ; Medicin och hälsovetenskap ; Membrane fusion ; Membranes ; Microscopy ; Models, Molecular ; Peptides ; receptor triggering ; retrovirus spike ; Roofs ; single particle imaging ; Trimers ; Tripods ; Viral morphology ; Virus-like particles ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (44), p.18844-18849</ispartof><rights>Copyright National Academy of Sciences Nov 2, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c685t-18abe75866870f917102690e4b4c9c627aec5ac1dfbd512c1820151bf0628dea3</citedby><cites>FETCH-LOGICAL-c685t-18abe75866870f917102690e4b4c9c627aec5ac1dfbd512c1820151bf0628dea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/44.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25748584$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25748584$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,733,786,790,891,27957,27958,53827,53829,58593,58826</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20956336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-82934$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:121531688$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Shang-Rung</creatorcontrib><creatorcontrib>Löving, Robin</creatorcontrib><creatorcontrib>Lindqvist, Birgitta</creatorcontrib><creatorcontrib>Hebert, Hans</creatorcontrib><creatorcontrib>Koeck, Philip J. B.</creatorcontrib><creatorcontrib>Sjöberg, Mathilda</creatorcontrib><creatorcontrib>Garoff, Henrik</creatorcontrib><creatorcontrib>Goff, Stephen P.</creatorcontrib><title>Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The HIV-1 spike is a trimer of the transmembrane gp41 and the peripheral gp120 subunit pair. It is activated for virus–cell membrane fusion by binding sequentially to CD4 and to a chemokine receptor. Here we have studied the structural transition of the trimeric spike during the activation process. We solubilized and isolated unliganded and CD4-bound spikes from virus-like particles and used cryoelectron microscopy to reconstruct their 3D structures. In order to increase the yield and stability of the spike, we used an endodomain deleted and gp120-gp41 disulfide-linked variant. The unliganded spike displayed a hollow cage-like structure where the gp120-gp41 protomeric units formed a roof and bottom, and separated lobes and legs on the sides. The tripod structure was verified by fitting the recent atomic core structure of gp120 with intact N- and C-terminal ends into the spike density map. This defined the lobe as gp120 core, showed that the legs contained the polypeptide termini, and suggested the deleted variable loops V1/V2 and V3 to occupy the roof and gp41 the bottom. CD4 binding shifted the roof density peripherally and condensed the bottom density centrally. Fitting with a V3 containing gp120 core suggested that the V1/V2 loops in the roof were displaced laterally and the V3 lifted up, while the core and leg were kept in place. The loop displacements probably prepared the spike for coreceptor interaction and roof opening so that a new fusion-active gp41 structure, assembled at the center of the cage bottom, could reach the target membrane.</description><subject>Atomic structure</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>CD4 antigen</subject><subject>CD4 Antigens</subject><subject>Cell membranes</subject><subject>Chemokine receptors</subject><subject>cryo-EM</subject><subject>Cryoelectron Microscopy</subject><subject>Cytokines</subject><subject>Electron microscopes</subject><subject>EMAN</subject><subject>Glycoprotein gp120</subject><subject>glycoprotein gp41</subject><subject>Glycoproteins</subject><subject>HIV</subject><subject>HIV 1</subject><subject>HIV Envelope Protein gp120</subject><subject>HIV Envelope Protein gp41</subject><subject>HIV-1 - chemistry</subject><subject>HIV-1 - ultrastructure</subject><subject>Human immunodeficiency virus</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>Leg</subject><subject>Medicin och hälsovetenskap</subject><subject>Membrane fusion</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>Peptides</subject><subject>receptor triggering</subject><subject>retrovirus spike</subject><subject>Roofs</subject><subject>single particle imaging</subject><subject>Trimers</subject><subject>Tripods</subject><subject>Viral morphology</subject><subject>Virus-like particles</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhiMEokvhzAlkcYEDobbj-OOCVJWPVqrEAegRy3Fmd72bjVPbKdp_j8MuXYoE4mB5NH7mHc34LYqnBL8hWFQnQ29ijrCgVOTEvWJGsCIlZwrfL2YYU1FKRtlR8SjGFcZY1RI_LI5oDnhV8Vnx7bPrFx2UgwnJ2Q6QDVsPHdgUfI82zgYfrR-2yPSm20YXUYAbMF1EaQno_OKqJCgObg3IRGRQCm7wLYopjDaNAR4XD-YZhif7-7j4-uH9l7Pz8vLTx4uz08vSclmnkkjTgKgl51LguSJ5FsoVBtYwqyynwoCtjSXtvGlrQi2RFJOaNHPMqWzBVMeF2unG7zCMjR6C25iw1d64HPtW7_NrNx0dQRNK6opwKXPt67_WvnNXp9qHhV6npZZUVSzjb3d4ZjfQWuhTMN3djndeerfUC3-jqRKVFFO_l3uB4K9HiElvXLTQdaYHP0YtOGUSMzaRr_5J5i1hWWW8-l-UcJXRF3-gKz-G_L0_WwsimJpan-ygyQAxwPx2QIL1ZD09WU8frJcrnv--l1v-l9cygPbAVHmQE5oxTaRk026f7ZBVTD4cJGrBZC1Z9QMQUeoo</recordid><startdate>20101102</startdate><enddate>20101102</enddate><creator>Wu, Shang-Rung</creator><creator>Löving, Robin</creator><creator>Lindqvist, Birgitta</creator><creator>Hebert, Hans</creator><creator>Koeck, Philip J. B.</creator><creator>Sjöberg, Mathilda</creator><creator>Garoff, Henrik</creator><creator>Goff, Stephen P.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20101102</creationdate><title>Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure</title><author>Wu, Shang-Rung ; Löving, Robin ; Lindqvist, Birgitta ; Hebert, Hans ; Koeck, Philip J. B. ; Sjöberg, Mathilda ; Garoff, Henrik ; Goff, Stephen P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c685t-18abe75866870f917102690e4b4c9c627aec5ac1dfbd512c1820151bf0628dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomic structure</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>CD4 antigen</topic><topic>CD4 Antigens</topic><topic>Cell membranes</topic><topic>Chemokine receptors</topic><topic>cryo-EM</topic><topic>Cryoelectron Microscopy</topic><topic>Cytokines</topic><topic>Electron microscopes</topic><topic>EMAN</topic><topic>Glycoprotein gp120</topic><topic>glycoprotein gp41</topic><topic>Glycoproteins</topic><topic>HIV</topic><topic>HIV 1</topic><topic>HIV Envelope Protein gp120</topic><topic>HIV Envelope Protein gp41</topic><topic>HIV-1 - chemistry</topic><topic>HIV-1 - ultrastructure</topic><topic>Human immunodeficiency virus</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>Leg</topic><topic>Medicin och hälsovetenskap</topic><topic>Membrane fusion</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>Peptides</topic><topic>receptor triggering</topic><topic>retrovirus spike</topic><topic>Roofs</topic><topic>single particle imaging</topic><topic>Trimers</topic><topic>Tripods</topic><topic>Viral morphology</topic><topic>Virus-like particles</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Shang-Rung</creatorcontrib><creatorcontrib>Löving, Robin</creatorcontrib><creatorcontrib>Lindqvist, Birgitta</creatorcontrib><creatorcontrib>Hebert, Hans</creatorcontrib><creatorcontrib>Koeck, Philip J. B.</creatorcontrib><creatorcontrib>Sjöberg, Mathilda</creatorcontrib><creatorcontrib>Garoff, Henrik</creatorcontrib><creatorcontrib>Goff, Stephen P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Shang-Rung</au><au>Löving, Robin</au><au>Lindqvist, Birgitta</au><au>Hebert, Hans</au><au>Koeck, Philip J. B.</au><au>Sjöberg, Mathilda</au><au>Garoff, Henrik</au><au>Goff, Stephen P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-11-02</date><risdate>2010</risdate><volume>107</volume><issue>44</issue><spage>18844</spage><epage>18849</epage><pages>18844-18849</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><notes>ObjectType-Article-1</notes><notes>ObjectType-Feature-2</notes><notes>Edited by Stephen P. Goff, Columbia University College of Physicians and Surgeons, New York, NY, and approved September 9, 2010 (received for review May 27, 2010)</notes><notes>Author contributions: S.-R.W., R.L., H.H., P.J.B.K., M.S., and H.G. designed research; S.-R.W., R.L., B.L., and M.S. performed research; S.-R.W., R.L., H.H., P.J.B.K., M.S., and H.G. analyzed data; and S.-R.W., R.L., M.S., and H.G. wrote the paper.</notes><notes>1S.-R.W. and R.L. contributed equally to this work.</notes><abstract>The HIV-1 spike is a trimer of the transmembrane gp41 and the peripheral gp120 subunit pair. It is activated for virus–cell membrane fusion by binding sequentially to CD4 and to a chemokine receptor. Here we have studied the structural transition of the trimeric spike during the activation process. We solubilized and isolated unliganded and CD4-bound spikes from virus-like particles and used cryoelectron microscopy to reconstruct their 3D structures. In order to increase the yield and stability of the spike, we used an endodomain deleted and gp120-gp41 disulfide-linked variant. The unliganded spike displayed a hollow cage-like structure where the gp120-gp41 protomeric units formed a roof and bottom, and separated lobes and legs on the sides. The tripod structure was verified by fitting the recent atomic core structure of gp120 with intact N- and C-terminal ends into the spike density map. This defined the lobe as gp120 core, showed that the legs contained the polypeptide termini, and suggested the deleted variable loops V1/V2 and V3 to occupy the roof and gp41 the bottom. CD4 binding shifted the roof density peripherally and condensed the bottom density centrally. Fitting with a V3 containing gp120 core suggested that the V1/V2 loops in the roof were displaced laterally and the V3 lifted up, while the core and leg were kept in place. The loop displacements probably prepared the spike for coreceptor interaction and roof opening so that a new fusion-active gp41 structure, assembled at the center of the cage bottom, could reach the target membrane.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20956336</pmid><doi>10.1073/pnas.1007227107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (44), p.18844-18849
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_proquest_journals_762717498
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Atomic structure
Binding sites
Biochemistry
Biological Sciences
CD4 antigen
CD4 Antigens
Cell membranes
Chemokine receptors
cryo-EM
Cryoelectron Microscopy
Cytokines
Electron microscopes
EMAN
Glycoprotein gp120
glycoprotein gp41
Glycoproteins
HIV
HIV 1
HIV Envelope Protein gp120
HIV Envelope Protein gp41
HIV-1 - chemistry
HIV-1 - ultrastructure
Human immunodeficiency virus
Human immunodeficiency virus 1
Humans
Imaging, Three-Dimensional
Leg
Medicin och hälsovetenskap
Membrane fusion
Membranes
Microscopy
Models, Molecular
Peptides
receptor triggering
retrovirus spike
Roofs
single particle imaging
Trimers
Tripods
Viral morphology
Virus-like particles
Viruses
title Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T10%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-particle%20cryoelectron%20microscopy%20analysis%20reveals%20the%20HIV-1%20spike%20as%20a%20tripod%20structure&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wu,%20Shang-Rung&rft.date=2010-11-02&rft.volume=107&rft.issue=44&rft.spage=18844&rft.epage=18849&rft.pages=18844-18849&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1007227107&rft_dat=%3Cjstor_proqu%3E25748584%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c685t-18abe75866870f917102690e4b4c9c627aec5ac1dfbd512c1820151bf0628dea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=762717498&rft_id=info:pmid/20956336&rft_jstor_id=25748584&rfr_iscdi=true