Loading…

A theory for testing hypotheses under covariate-adaptive randomization

The covariate-adaptive randomization method was proposed for clinical trials long ago but little theoretical work has been done for statistical inference associated with it. Practitioners often apply test procedures available for simple randomization, which is controversial since procedures valid un...

Full description

Saved in:
Bibliographic Details
Published in:Biometrika 2010-06, Vol.97 (2), p.347-360
Main Authors: Shao, Jun, Yu, Xinxin, Zhong, Bob
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-a5e3824fb72b5257861d6339a43db16bc0aa6bc3901fea717929478d857b38773
cites cdi_FETCH-LOGICAL-c421t-a5e3824fb72b5257861d6339a43db16bc0aa6bc3901fea717929478d857b38773
container_end_page 360
container_issue 2
container_start_page 347
container_title Biometrika
container_volume 97
creator Shao, Jun
Yu, Xinxin
Zhong, Bob
description The covariate-adaptive randomization method was proposed for clinical trials long ago but little theoretical work has been done for statistical inference associated with it. Practitioners often apply test procedures available for simple randomization, which is controversial since procedures valid under simple randomization may not be valid under other randomization schemes. In this paper, we provide some theoretical results for testing hypotheses after covariate-adaptive randomization. We show that one way to obtain a valid test procedure is to use a correct model between outcomes and covariates, including those used in randomization. We also show that the simple two sample t-test, without using any covariate, is conservative under covariate-adaptive biased coin randomization in terms of its Type I error, and that a valid bootstrap t-test can be constructed. The powers of several tests are examined theoretically and empirically. Our study provides guidance for applications and sheds light on further research in this area.
doi_str_mv 10.1093/biomet/asq014
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_346946603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25734090</jstor_id><sourcerecordid>25734090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-a5e3824fb72b5257861d6339a43db16bc0aa6bc3901fea717929478d857b38773</originalsourceid><addsrcrecordid>eNpFkM9r2zAUx8XYYFm6Y48DM-jRreQnS9axlKbtEroeOii9iGdbXpQllispYdlfPwWH9PB9-vE-fPX0JeSc0UtGFVzV1m1MvMLwRhn_QCaMC55DyehHMqGUihw455_JlxBWh6MoxYTMrrO4NM7vs875LJoQbf87W-4Hl66DCdm2b43PGrdDbzGaHFscot2ZzGPfuo39h9G6_ox86nAdzNfjOiW_ZrfPN_f54ufdw831Im94wWKOpYGq4F0ti7osSlkJ1goAhRzamom6oYipgqKsMyiZVIXismqrUtZQSQlT8n30Hbx726Zp9cptfZ-e1MCF4kJQSFA-Qo13IXjT6cHbDfq9ZlQfktJjUnpMKvE_Rt6bwTQn2G2HI7fTgEqmsk8qaHIBtIdt0pAEPDUF1cu4SWYXxwkxNLjuUkyNDSfTAmjBlWKJ-zZyqxCdf--XEjhV9P0TNkTz99RH_0cLCbLU9y-v-lHC63wunzSD_4oHnMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>346946603</pqid></control><display><type>article</type><title>A theory for testing hypotheses under covariate-adaptive randomization</title><source>Oxford University Press Journals</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Shao, Jun ; Yu, Xinxin ; Zhong, Bob</creator><creatorcontrib>Shao, Jun ; Yu, Xinxin ; Zhong, Bob</creatorcontrib><description>The covariate-adaptive randomization method was proposed for clinical trials long ago but little theoretical work has been done for statistical inference associated with it. Practitioners often apply test procedures available for simple randomization, which is controversial since procedures valid under simple randomization may not be valid under other randomization schemes. In this paper, we provide some theoretical results for testing hypotheses after covariate-adaptive randomization. We show that one way to obtain a valid test procedure is to use a correct model between outcomes and covariates, including those used in randomization. We also show that the simple two sample t-test, without using any covariate, is conservative under covariate-adaptive biased coin randomization in terms of its Type I error, and that a valid bootstrap t-test can be constructed. The powers of several tests are examined theoretically and empirically. Our study provides guidance for applications and sheds light on further research in this area.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asq014</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Adaptive allocation ; Applications ; Biased coin ; Biology, psychology, social sciences ; Bootstrap method ; Clinical trial ; Clinical trials ; Conditional probabilities ; Covariance ; Estimation bias ; Estimators ; Exact sciences and technology ; General topics ; Hypotheses ; Hypothesis testing ; Inference ; Mathematics ; Minimization ; Modeling ; Nonparametric inference ; Parametric inference ; Power ; Probability and statistics ; Random allocation ; Random variables ; Sampling bias ; Sciences and techniques of general use ; Significance level ; Statistical inference ; Statistical variance ; Statistics ; Studies ; Type I error</subject><ispartof>Biometrika, 2010-06, Vol.97 (2), p.347-360</ispartof><rights>2010 Biometrika Trust</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Oxford Publishing Limited(England) Jun 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-a5e3824fb72b5257861d6339a43db16bc0aa6bc3901fea717929478d857b38773</citedby><cites>FETCH-LOGICAL-c421t-a5e3824fb72b5257861d6339a43db16bc0aa6bc3901fea717929478d857b38773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25734090$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25734090$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,58593,58826</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23024991$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/oupbiomet/v_3a97_3ay_3a2010_3ai_3a2_3ap_3a347-360.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Jun</creatorcontrib><creatorcontrib>Yu, Xinxin</creatorcontrib><creatorcontrib>Zhong, Bob</creatorcontrib><title>A theory for testing hypotheses under covariate-adaptive randomization</title><title>Biometrika</title><description>The covariate-adaptive randomization method was proposed for clinical trials long ago but little theoretical work has been done for statistical inference associated with it. Practitioners often apply test procedures available for simple randomization, which is controversial since procedures valid under simple randomization may not be valid under other randomization schemes. In this paper, we provide some theoretical results for testing hypotheses after covariate-adaptive randomization. We show that one way to obtain a valid test procedure is to use a correct model between outcomes and covariates, including those used in randomization. We also show that the simple two sample t-test, without using any covariate, is conservative under covariate-adaptive biased coin randomization in terms of its Type I error, and that a valid bootstrap t-test can be constructed. The powers of several tests are examined theoretically and empirically. Our study provides guidance for applications and sheds light on further research in this area.</description><subject>Adaptive allocation</subject><subject>Applications</subject><subject>Biased coin</subject><subject>Biology, psychology, social sciences</subject><subject>Bootstrap method</subject><subject>Clinical trial</subject><subject>Clinical trials</subject><subject>Conditional probabilities</subject><subject>Covariance</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Inference</subject><subject>Mathematics</subject><subject>Minimization</subject><subject>Modeling</subject><subject>Nonparametric inference</subject><subject>Parametric inference</subject><subject>Power</subject><subject>Probability and statistics</subject><subject>Random allocation</subject><subject>Random variables</subject><subject>Sampling bias</subject><subject>Sciences and techniques of general use</subject><subject>Significance level</subject><subject>Statistical inference</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Studies</subject><subject>Type I error</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpFkM9r2zAUx8XYYFm6Y48DM-jRreQnS9axlKbtEroeOii9iGdbXpQllispYdlfPwWH9PB9-vE-fPX0JeSc0UtGFVzV1m1MvMLwRhn_QCaMC55DyehHMqGUihw455_JlxBWh6MoxYTMrrO4NM7vs875LJoQbf87W-4Hl66DCdm2b43PGrdDbzGaHFscot2ZzGPfuo39h9G6_ox86nAdzNfjOiW_ZrfPN_f54ufdw831Im94wWKOpYGq4F0ti7osSlkJ1goAhRzamom6oYipgqKsMyiZVIXismqrUtZQSQlT8n30Hbx726Zp9cptfZ-e1MCF4kJQSFA-Qo13IXjT6cHbDfq9ZlQfktJjUnpMKvE_Rt6bwTQn2G2HI7fTgEqmsk8qaHIBtIdt0pAEPDUF1cu4SWYXxwkxNLjuUkyNDSfTAmjBlWKJ-zZyqxCdf--XEjhV9P0TNkTz99RH_0cLCbLU9y-v-lHC63wunzSD_4oHnMg</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Shao, Jun</creator><creator>Yu, Xinxin</creator><creator>Zhong, Bob</creator><general>Oxford University Press</general><general>Biometrika Trust, University College London</general><general>Oxford University Press for Biometrika Trust</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100601</creationdate><title>A theory for testing hypotheses under covariate-adaptive randomization</title><author>Shao, Jun ; Yu, Xinxin ; Zhong, Bob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-a5e3824fb72b5257861d6339a43db16bc0aa6bc3901fea717929478d857b38773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive allocation</topic><topic>Applications</topic><topic>Biased coin</topic><topic>Biology, psychology, social sciences</topic><topic>Bootstrap method</topic><topic>Clinical trial</topic><topic>Clinical trials</topic><topic>Conditional probabilities</topic><topic>Covariance</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Inference</topic><topic>Mathematics</topic><topic>Minimization</topic><topic>Modeling</topic><topic>Nonparametric inference</topic><topic>Parametric inference</topic><topic>Power</topic><topic>Probability and statistics</topic><topic>Random allocation</topic><topic>Random variables</topic><topic>Sampling bias</topic><topic>Sciences and techniques of general use</topic><topic>Significance level</topic><topic>Statistical inference</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Studies</topic><topic>Type I error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Jun</creatorcontrib><creatorcontrib>Yu, Xinxin</creatorcontrib><creatorcontrib>Zhong, Bob</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Jun</au><au>Yu, Xinxin</au><au>Zhong, Bob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theory for testing hypotheses under covariate-adaptive randomization</atitle><jtitle>Biometrika</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>97</volume><issue>2</issue><spage>347</spage><epage>360</epage><pages>347-360</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><notes>istex:3285AD5C28A36C33B3B54FA25BFFC0033F446F3A</notes><notes>ArticleID:asq014</notes><notes>ark:/67375/HXZ-N73ZKK7P-1</notes><abstract>The covariate-adaptive randomization method was proposed for clinical trials long ago but little theoretical work has been done for statistical inference associated with it. Practitioners often apply test procedures available for simple randomization, which is controversial since procedures valid under simple randomization may not be valid under other randomization schemes. In this paper, we provide some theoretical results for testing hypotheses after covariate-adaptive randomization. We show that one way to obtain a valid test procedure is to use a correct model between outcomes and covariates, including those used in randomization. We also show that the simple two sample t-test, without using any covariate, is conservative under covariate-adaptive biased coin randomization in terms of its Type I error, and that a valid bootstrap t-test can be constructed. The powers of several tests are examined theoretically and empirically. Our study provides guidance for applications and sheds light on further research in this area.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asq014</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2010-06, Vol.97 (2), p.347-360
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_346946603
source Oxford University Press Journals; JSTOR Archival Journals and Primary Sources Collection
subjects Adaptive allocation
Applications
Biased coin
Biology, psychology, social sciences
Bootstrap method
Clinical trial
Clinical trials
Conditional probabilities
Covariance
Estimation bias
Estimators
Exact sciences and technology
General topics
Hypotheses
Hypothesis testing
Inference
Mathematics
Minimization
Modeling
Nonparametric inference
Parametric inference
Power
Probability and statistics
Random allocation
Random variables
Sampling bias
Sciences and techniques of general use
Significance level
Statistical inference
Statistical variance
Statistics
Studies
Type I error
title A theory for testing hypotheses under covariate-adaptive randomization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T21%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theory%20for%20testing%20hypotheses%20under%20covariate-adaptive%20randomization&rft.jtitle=Biometrika&rft.au=Shao,%20Jun&rft.date=2010-06-01&rft.volume=97&rft.issue=2&rft.spage=347&rft.epage=360&rft.pages=347-360&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/asq014&rft_dat=%3Cjstor_proqu%3E25734090%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-a5e3824fb72b5257861d6339a43db16bc0aa6bc3901fea717929478d857b38773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=346946603&rft_id=info:pmid/&rft_jstor_id=25734090&rfr_iscdi=true