Loading…

Enabling High‐Performance Potassium‐Ion Batteries by Manipulating Interfacial Chemistry

As a promising candidate for the flame‐retardant electrolyte, triethyl phosphate (TEP)/potassium bis(fluorosulfonyl)amide (KFSI)‐based electrolyte has drawn much attention in the K‐ion battery community. Although the TEP/KFSI formula at a moderate main salt concentration (normally,

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-05, Vol.34 (21), p.n/a
Main Authors: Zhang, Haodong, Wang, Huwei, Li, Wei, Wei, Yaojie, Wen, Bohua, Zhai, Dengyun, Kang, Feiyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3178-53ef1c4229ede230e338bed32fcc1b9ab8d0ef54ffd9170472fbf214a756a4bf3
cites cdi_FETCH-LOGICAL-c3178-53ef1c4229ede230e338bed32fcc1b9ab8d0ef54ffd9170472fbf214a756a4bf3
container_end_page n/a
container_issue 21
container_start_page
container_title Advanced functional materials
container_volume 34
creator Zhang, Haodong
Wang, Huwei
Li, Wei
Wei, Yaojie
Wen, Bohua
Zhai, Dengyun
Kang, Feiyu
description As a promising candidate for the flame‐retardant electrolyte, triethyl phosphate (TEP)/potassium bis(fluorosulfonyl)amide (KFSI)‐based electrolyte has drawn much attention in the K‐ion battery community. Although the TEP/KFSI formula at a moderate main salt concentration (normally,
doi_str_mv 10.1002/adfm.202312368
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3057578286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057578286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-53ef1c4229ede230e338bed32fcc1b9ab8d0ef54ffd9170472fbf214a756a4bf3</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQhxdRsFavngOeU_dPkt0ca7W20GIPCoKHZZPMtluSTd1NkNx8BJ_RJzGlUo-eZpj5fTPwIXRN8IhgTG9VoasRxZQRyhJxggYkIUnIMBWnx568nqML77cYE85ZNEBvD1ZlpbHrYGbWm-_PrxU4XbtK2RyCVd0o701b9fN5bYM71TTgDPgg64KlsmbXlqrZw3PbL7TKjSqDyQYq4xvXXaIzrUoPV791iF6mD8-TWbh4epxPxoswZ4SLMGagSR5RmkIBlGFgTGRQMKrznGSpykSBQceR1kVKOI441ZmmJFI8TlSUaTZEN4e7O1e_t-Abua1bZ_uXkuGYx1xQkfSp0SGVu9p7B1runKmU6yTBci9Q7gXKo8AeSA_Ahymh-yctx_fT5R_7A8nOeCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057578286</pqid></control><display><type>article</type><title>Enabling High‐Performance Potassium‐Ion Batteries by Manipulating Interfacial Chemistry</title><source>Wiley</source><creator>Zhang, Haodong ; Wang, Huwei ; Li, Wei ; Wei, Yaojie ; Wen, Bohua ; Zhai, Dengyun ; Kang, Feiyu</creator><creatorcontrib>Zhang, Haodong ; Wang, Huwei ; Li, Wei ; Wei, Yaojie ; Wen, Bohua ; Zhai, Dengyun ; Kang, Feiyu</creatorcontrib><description>As a promising candidate for the flame‐retardant electrolyte, triethyl phosphate (TEP)/potassium bis(fluorosulfonyl)amide (KFSI)‐based electrolyte has drawn much attention in the K‐ion battery community. Although the TEP/KFSI formula at a moderate main salt concentration (normally, &lt;3 m) enables the compatibility of the reactive K metal anode, the long‐standing oxidative instability of KFSI salt remains unsolved. Here, an additive strategy is reported to address the high‐voltage issue in the TEP/KFSI electrolyte, and generalize it to the other KFSI‐based electrolytes. The addition of potassium nitrate changes the surface charge distribution and effectively suppresses the decomposition of KFSI toward the high‐voltage cathode. The nitrate‐containing electrolyte enables superior stability of a 4.3 V‐class K‐ion battery, as evidenced by its 80% capacity retention over 2000 cycles (≈6 months) at the 1 C rate. Moreover, the long‐cycling stability of the graphite‐based full cell with Prussian Blue cathode is demonstrated. An electrolyte additive design is proposed to address the long‐neglected high‐voltage issue, namely, the decomposition of mainstream salt, KFSI (potassium bis(fluorosulfonyl)amide)), in the K‐ion electrolytes. Experimentally, this work demonstrates charge distribution change at the interface, highlighting the role of high‐voltage additives in surface regulation.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202312368</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Charge distribution ; electrochemical quartz crystal microbalance (EQCM) ; electrolyte design ; Electrolytes ; High voltages ; high‐voltage ; K‐ion battery ; Pigments ; Potassium ; Rechargeable batteries ; Stability ; Surface charge ; surface charge distribution</subject><ispartof>Advanced functional materials, 2024-05, Vol.34 (21), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-53ef1c4229ede230e338bed32fcc1b9ab8d0ef54ffd9170472fbf214a756a4bf3</citedby><cites>FETCH-LOGICAL-c3178-53ef1c4229ede230e338bed32fcc1b9ab8d0ef54ffd9170472fbf214a756a4bf3</cites><orcidid>0000-0002-0343-0036 ; 0000-0001-6371-9467 ; 0000-0002-8270-3396 ; 0000-0001-7012-9887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202312368$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202312368$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids></links><search><creatorcontrib>Zhang, Haodong</creatorcontrib><creatorcontrib>Wang, Huwei</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wei, Yaojie</creatorcontrib><creatorcontrib>Wen, Bohua</creatorcontrib><creatorcontrib>Zhai, Dengyun</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><title>Enabling High‐Performance Potassium‐Ion Batteries by Manipulating Interfacial Chemistry</title><title>Advanced functional materials</title><description>As a promising candidate for the flame‐retardant electrolyte, triethyl phosphate (TEP)/potassium bis(fluorosulfonyl)amide (KFSI)‐based electrolyte has drawn much attention in the K‐ion battery community. Although the TEP/KFSI formula at a moderate main salt concentration (normally, &lt;3 m) enables the compatibility of the reactive K metal anode, the long‐standing oxidative instability of KFSI salt remains unsolved. Here, an additive strategy is reported to address the high‐voltage issue in the TEP/KFSI electrolyte, and generalize it to the other KFSI‐based electrolytes. The addition of potassium nitrate changes the surface charge distribution and effectively suppresses the decomposition of KFSI toward the high‐voltage cathode. The nitrate‐containing electrolyte enables superior stability of a 4.3 V‐class K‐ion battery, as evidenced by its 80% capacity retention over 2000 cycles (≈6 months) at the 1 C rate. Moreover, the long‐cycling stability of the graphite‐based full cell with Prussian Blue cathode is demonstrated. An electrolyte additive design is proposed to address the long‐neglected high‐voltage issue, namely, the decomposition of mainstream salt, KFSI (potassium bis(fluorosulfonyl)amide)), in the K‐ion electrolytes. Experimentally, this work demonstrates charge distribution change at the interface, highlighting the role of high‐voltage additives in surface regulation.</description><subject>Cathodes</subject><subject>Charge distribution</subject><subject>electrochemical quartz crystal microbalance (EQCM)</subject><subject>electrolyte design</subject><subject>Electrolytes</subject><subject>High voltages</subject><subject>high‐voltage</subject><subject>K‐ion battery</subject><subject>Pigments</subject><subject>Potassium</subject><subject>Rechargeable batteries</subject><subject>Stability</subject><subject>Surface charge</subject><subject>surface charge distribution</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQhxdRsFavngOeU_dPkt0ca7W20GIPCoKHZZPMtluSTd1NkNx8BJ_RJzGlUo-eZpj5fTPwIXRN8IhgTG9VoasRxZQRyhJxggYkIUnIMBWnx568nqML77cYE85ZNEBvD1ZlpbHrYGbWm-_PrxU4XbtK2RyCVd0o701b9fN5bYM71TTgDPgg64KlsmbXlqrZw3PbL7TKjSqDyQYq4xvXXaIzrUoPV791iF6mD8-TWbh4epxPxoswZ4SLMGagSR5RmkIBlGFgTGRQMKrznGSpykSBQceR1kVKOI441ZmmJFI8TlSUaTZEN4e7O1e_t-Abua1bZ_uXkuGYx1xQkfSp0SGVu9p7B1runKmU6yTBci9Q7gXKo8AeSA_Ahymh-yctx_fT5R_7A8nOeCI</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhang, Haodong</creator><creator>Wang, Huwei</creator><creator>Li, Wei</creator><creator>Wei, Yaojie</creator><creator>Wen, Bohua</creator><creator>Zhai, Dengyun</creator><creator>Kang, Feiyu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0343-0036</orcidid><orcidid>https://orcid.org/0000-0001-6371-9467</orcidid><orcidid>https://orcid.org/0000-0002-8270-3396</orcidid><orcidid>https://orcid.org/0000-0001-7012-9887</orcidid></search><sort><creationdate>20240501</creationdate><title>Enabling High‐Performance Potassium‐Ion Batteries by Manipulating Interfacial Chemistry</title><author>Zhang, Haodong ; Wang, Huwei ; Li, Wei ; Wei, Yaojie ; Wen, Bohua ; Zhai, Dengyun ; Kang, Feiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-53ef1c4229ede230e338bed32fcc1b9ab8d0ef54ffd9170472fbf214a756a4bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Charge distribution</topic><topic>electrochemical quartz crystal microbalance (EQCM)</topic><topic>electrolyte design</topic><topic>Electrolytes</topic><topic>High voltages</topic><topic>high‐voltage</topic><topic>K‐ion battery</topic><topic>Pigments</topic><topic>Potassium</topic><topic>Rechargeable batteries</topic><topic>Stability</topic><topic>Surface charge</topic><topic>surface charge distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haodong</creatorcontrib><creatorcontrib>Wang, Huwei</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wei, Yaojie</creatorcontrib><creatorcontrib>Wen, Bohua</creatorcontrib><creatorcontrib>Zhai, Dengyun</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Haodong</au><au>Wang, Huwei</au><au>Li, Wei</au><au>Wei, Yaojie</au><au>Wen, Bohua</au><au>Zhai, Dengyun</au><au>Kang, Feiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling High‐Performance Potassium‐Ion Batteries by Manipulating Interfacial Chemistry</atitle><jtitle>Advanced functional materials</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>21</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>As a promising candidate for the flame‐retardant electrolyte, triethyl phosphate (TEP)/potassium bis(fluorosulfonyl)amide (KFSI)‐based electrolyte has drawn much attention in the K‐ion battery community. Although the TEP/KFSI formula at a moderate main salt concentration (normally, &lt;3 m) enables the compatibility of the reactive K metal anode, the long‐standing oxidative instability of KFSI salt remains unsolved. Here, an additive strategy is reported to address the high‐voltage issue in the TEP/KFSI electrolyte, and generalize it to the other KFSI‐based electrolytes. The addition of potassium nitrate changes the surface charge distribution and effectively suppresses the decomposition of KFSI toward the high‐voltage cathode. The nitrate‐containing electrolyte enables superior stability of a 4.3 V‐class K‐ion battery, as evidenced by its 80% capacity retention over 2000 cycles (≈6 months) at the 1 C rate. Moreover, the long‐cycling stability of the graphite‐based full cell with Prussian Blue cathode is demonstrated. An electrolyte additive design is proposed to address the long‐neglected high‐voltage issue, namely, the decomposition of mainstream salt, KFSI (potassium bis(fluorosulfonyl)amide)), in the K‐ion electrolytes. Experimentally, this work demonstrates charge distribution change at the interface, highlighting the role of high‐voltage additives in surface regulation.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202312368</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0343-0036</orcidid><orcidid>https://orcid.org/0000-0001-6371-9467</orcidid><orcidid>https://orcid.org/0000-0002-8270-3396</orcidid><orcidid>https://orcid.org/0000-0001-7012-9887</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-05, Vol.34 (21), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3057578286
source Wiley
subjects Cathodes
Charge distribution
electrochemical quartz crystal microbalance (EQCM)
electrolyte design
Electrolytes
High voltages
high‐voltage
K‐ion battery
Pigments
Potassium
Rechargeable batteries
Stability
Surface charge
surface charge distribution
title Enabling High‐Performance Potassium‐Ion Batteries by Manipulating Interfacial Chemistry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T02%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20High%E2%80%90Performance%20Potassium%E2%80%90Ion%20Batteries%20by%20Manipulating%20Interfacial%20Chemistry&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Haodong&rft.date=2024-05-01&rft.volume=34&rft.issue=21&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202312368&rft_dat=%3Cproquest_cross%3E3057578286%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3178-53ef1c4229ede230e338bed32fcc1b9ab8d0ef54ffd9170472fbf214a756a4bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3057578286&rft_id=info:pmid/&rfr_iscdi=true