Loading…

The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. III. Single Object Slitless Spectroscopy

Abstract The Near Infrared Imager and Slitless Spectrograph instrument (NIRISS) is the Canadian Space Agency contribution to the suite of four science instruments of the James Webb Space Telescope. As one of the three NIRISS observing modes, the Single Object Slitless Spectroscopy (SOSS) mode is tai...

Full description

Saved in:
Bibliographic Details
Published in:Publications of the Astronomical Society of the Pacific 2023-07, Vol.135 (1049), p.75001
Main Authors: Albert, Loïc, Lafrenière, David, Doyon, René, Artigau, Étienne, Volk, Kevin, Goudfrooij, Paul, Martel, André R., Radica, Michael, Rowe, Jason, Espinoza, Néstor, Roy, Arpita, Filippazzo, Joseph C., Darveau-Bernier, Antoine, Talens, Geert Jan, Sivaramakrishnan, Anand, Willott, Chris J., Fullerton, Alexander W., LaMassa, Stephanie, Hutchings, John B., Rowlands, Neil, Begoña Vila, M., Zhou, Julia, Aldridge, David, Maszkiewicz, Michael, Beaulieu, Mathilde, Cook, Neil J., Piaulet, Caroline, Roy, Pierre-Alexis, Lamontagne, Pierrot, Morel, Kim, Frost, William, Salhi, Salma, Coulombe, Louis-Philippe, Benneke, Björn, MacDonald, Ryan J., Johnstone, Doug, Turner, Jake D., Fournier-Tondreau, Marylou, Allart, Romain, Kaltenegger, Lisa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-6a5a44aeb225d540daa4a6731944bfbccc51906675cf943010fd89732454859a3
cites cdi_FETCH-LOGICAL-c350t-6a5a44aeb225d540daa4a6731944bfbccc51906675cf943010fd89732454859a3
container_end_page
container_issue 1049
container_start_page 75001
container_title Publications of the Astronomical Society of the Pacific
container_volume 135
creator Albert, Loïc
Lafrenière, David
Doyon, René
Artigau, Étienne
Volk, Kevin
Goudfrooij, Paul
Martel, André R.
Radica, Michael
Rowe, Jason
Espinoza, Néstor
Roy, Arpita
Filippazzo, Joseph C.
Darveau-Bernier, Antoine
Talens, Geert Jan
Sivaramakrishnan, Anand
Willott, Chris J.
Fullerton, Alexander W.
LaMassa, Stephanie
Hutchings, John B.
Rowlands, Neil
Begoña Vila, M.
Zhou, Julia
Aldridge, David
Maszkiewicz, Michael
Beaulieu, Mathilde
Cook, Neil J.
Piaulet, Caroline
Roy, Pierre-Alexis
Lamontagne, Pierrot
Morel, Kim
Frost, William
Salhi, Salma
Coulombe, Louis-Philippe
Benneke, Björn
MacDonald, Ryan J.
Johnstone, Doug
Turner, Jake D.
Fournier-Tondreau, Marylou
Allart, Romain
Kaltenegger, Lisa
description Abstract The Near Infrared Imager and Slitless Spectrograph instrument (NIRISS) is the Canadian Space Agency contribution to the suite of four science instruments of the James Webb Space Telescope. As one of the three NIRISS observing modes, the Single Object Slitless Spectroscopy (SOSS) mode is tailor-made to undertake time-series observations of exoplanets to perform transit spectroscopy. The SOSS permits observing point sources between 0.6 and 2.8 μ m at a resolving power of 650 at 1.25 μ m using a slitless cross-dispersing grism while its defocussing cylindrical lens enables observing targets as bright as J = 6.7 by spreading light across 23 pixels along the cross-dispersion axis. This paper officially presents the design of the SOSS mode, its operation, characterization, and its performance, from ground-based testing and flight-based commissioning. On-sky measurements demonstrate a peak photon conversion efficiency of 55% at 1.2 μ m. The first time series on the A-type star BD+60°1753 achieves a flux stability close to the photon-noise limit, so far tested to a level of 20 parts per million on a 40 minute timescale after simply subtracting a long-term trend. Uncorrected 1/ f noise residuals underneath the spectral traces add an extra source of noise equivalent to doubling the readout noise. Preliminary analysis of an HAT-P-14b transit time series indicates that it is difficult to remove all of the noise in pixels with partially saturated ramps. Overall, the SOSS delivers performance at the level required to tackle key exoplanetary science programs such as detecting secondary atmospheres on terrestrial planets and measuring abundances of several chemical species in gas giants.
doi_str_mv 10.1088/1538-3873/acd7a3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054330100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054330100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-6a5a44aeb225d540daa4a6731944bfbccc51906675cf943010fd89732454859a3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwM1piJe05thNnRBUfQRUdWsRoXRynTZUmwQlDJ_46joJgQEyWzs_z3ukl5JrBjIFScya5CriK-RxNHiM_IZOf0SmZAIAIolDBObnouj0AY4rBhHxudpa-WHQ0rQuHzuY0PeDWOop1TtdV2Ve26-i6taZ3zdZhu6NF42jvtWc82I6-2Szz_2gs3VgPm6a1M5qm6Yyuy3pbWbrK9t7-EzaQx0tyVmDV2avvd0peH-43i6dguXpMF3fLwHAJfRChRCHQZmEocykgRxQYxZwlQmRFZoyRLIEoiqUpEsGBQZGrJOahkELJBPmU3Iy5rWveP2zX633z4Wq_UnOQgg8KeApGyvjzOmcL3brygO6oGeihZj10qodO9VizV25HpWza38x_8S-ut34H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054330100</pqid></control><display><type>article</type><title>The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. III. Single Object Slitless Spectroscopy</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Albert, Loïc ; Lafrenière, David ; Doyon, René ; Artigau, Étienne ; Volk, Kevin ; Goudfrooij, Paul ; Martel, André R. ; Radica, Michael ; Rowe, Jason ; Espinoza, Néstor ; Roy, Arpita ; Filippazzo, Joseph C. ; Darveau-Bernier, Antoine ; Talens, Geert Jan ; Sivaramakrishnan, Anand ; Willott, Chris J. ; Fullerton, Alexander W. ; LaMassa, Stephanie ; Hutchings, John B. ; Rowlands, Neil ; Begoña Vila, M. ; Zhou, Julia ; Aldridge, David ; Maszkiewicz, Michael ; Beaulieu, Mathilde ; Cook, Neil J. ; Piaulet, Caroline ; Roy, Pierre-Alexis ; Lamontagne, Pierrot ; Morel, Kim ; Frost, William ; Salhi, Salma ; Coulombe, Louis-Philippe ; Benneke, Björn ; MacDonald, Ryan J. ; Johnstone, Doug ; Turner, Jake D. ; Fournier-Tondreau, Marylou ; Allart, Romain ; Kaltenegger, Lisa</creator><creatorcontrib>Albert, Loïc ; Lafrenière, David ; Doyon, René ; Artigau, Étienne ; Volk, Kevin ; Goudfrooij, Paul ; Martel, André R. ; Radica, Michael ; Rowe, Jason ; Espinoza, Néstor ; Roy, Arpita ; Filippazzo, Joseph C. ; Darveau-Bernier, Antoine ; Talens, Geert Jan ; Sivaramakrishnan, Anand ; Willott, Chris J. ; Fullerton, Alexander W. ; LaMassa, Stephanie ; Hutchings, John B. ; Rowlands, Neil ; Begoña Vila, M. ; Zhou, Julia ; Aldridge, David ; Maszkiewicz, Michael ; Beaulieu, Mathilde ; Cook, Neil J. ; Piaulet, Caroline ; Roy, Pierre-Alexis ; Lamontagne, Pierrot ; Morel, Kim ; Frost, William ; Salhi, Salma ; Coulombe, Louis-Philippe ; Benneke, Björn ; MacDonald, Ryan J. ; Johnstone, Doug ; Turner, Jake D. ; Fournier-Tondreau, Marylou ; Allart, Romain ; Kaltenegger, Lisa</creatorcontrib><description>Abstract The Near Infrared Imager and Slitless Spectrograph instrument (NIRISS) is the Canadian Space Agency contribution to the suite of four science instruments of the James Webb Space Telescope. As one of the three NIRISS observing modes, the Single Object Slitless Spectroscopy (SOSS) mode is tailor-made to undertake time-series observations of exoplanets to perform transit spectroscopy. The SOSS permits observing point sources between 0.6 and 2.8 μ m at a resolving power of 650 at 1.25 μ m using a slitless cross-dispersing grism while its defocussing cylindrical lens enables observing targets as bright as J = 6.7 by spreading light across 23 pixels along the cross-dispersion axis. This paper officially presents the design of the SOSS mode, its operation, characterization, and its performance, from ground-based testing and flight-based commissioning. On-sky measurements demonstrate a peak photon conversion efficiency of 55% at 1.2 μ m. The first time series on the A-type star BD+60°1753 achieves a flux stability close to the photon-noise limit, so far tested to a level of 20 parts per million on a 40 minute timescale after simply subtracting a long-term trend. Uncorrected 1/ f noise residuals underneath the spectral traces add an extra source of noise equivalent to doubling the readout noise. Preliminary analysis of an HAT-P-14b transit time series indicates that it is difficult to remove all of the noise in pixels with partially saturated ramps. Overall, the SOSS delivers performance at the level required to tackle key exoplanetary science programs such as detecting secondary atmospheres on terrestrial planets and measuring abundances of several chemical species in gas giants.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1088/1538-3873/acd7a3</identifier><language>eng</language><publisher>Philadelphia: The Astronomical Society of the Pacific</publisher><subject>Astronomical instrumentation ; Chemical speciation ; Exoplanet atmospheres ; Extrasolar planets ; Gas giant planets ; Infrared astronomy ; Noise ; Space telescopes ; Spectroscopy ; Spectrum analysis ; Terrestrial planets ; Time series</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2023-07, Vol.135 (1049), p.75001</ispartof><rights>2023. The Author(s). Published by IOP Publishing Ltd on behalf of the Astronomical Society of the Pacific (ASP). All rights reserved</rights><rights>2023. The Author(s). Published by IOP Publishing Ltd on behalf of the Astronomical Society of the Pacific (ASP). All rights reserved. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-6a5a44aeb225d540daa4a6731944bfbccc51906675cf943010fd89732454859a3</citedby><cites>FETCH-LOGICAL-c350t-6a5a44aeb225d540daa4a6731944bfbccc51906675cf943010fd89732454859a3</cites><orcidid>0000-0002-2875-917X ; 0000-0001-6809-3520 ; 0000-0001-7836-1787 ; 0000-0001-5485-4675 ; 0000-0003-4166-4121 ; 0000-0002-1199-9759 ; 0000-0003-4816-3469 ; 0000-0003-3506-5667 ; 0000-0002-3328-1203 ; 0000-0002-0436-1802 ; 0000-0001-5578-1498 ; 0000-0002-5428-0453 ; 0000-0002-2195-735X ; 0000-0002-6780-4252 ; 0000-0002-5728-1427 ; 0000-0002-0201-8306 ; 0000-0003-3504-1569 ; 0000-0002-5907-3330 ; 0000-0003-2429-7964 ; 0000-0001-9513-1449 ; 0000-0001-6758-7924 ; 0000-0002-6773-459X ; 0000-0002-3824-8832 ; 0000-0001-8127-5775 ; 0000-0003-4787-2335 ; 0000-0002-5904-1865 ; 0000-0002-4201-7367 ; 0000-0003-0475-9375 ; 0000-0002-1715-7069 ; 0000-0003-1251-4124 ; 0000-0002-7786-0661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Albert, Loïc</creatorcontrib><creatorcontrib>Lafrenière, David</creatorcontrib><creatorcontrib>Doyon, René</creatorcontrib><creatorcontrib>Artigau, Étienne</creatorcontrib><creatorcontrib>Volk, Kevin</creatorcontrib><creatorcontrib>Goudfrooij, Paul</creatorcontrib><creatorcontrib>Martel, André R.</creatorcontrib><creatorcontrib>Radica, Michael</creatorcontrib><creatorcontrib>Rowe, Jason</creatorcontrib><creatorcontrib>Espinoza, Néstor</creatorcontrib><creatorcontrib>Roy, Arpita</creatorcontrib><creatorcontrib>Filippazzo, Joseph C.</creatorcontrib><creatorcontrib>Darveau-Bernier, Antoine</creatorcontrib><creatorcontrib>Talens, Geert Jan</creatorcontrib><creatorcontrib>Sivaramakrishnan, Anand</creatorcontrib><creatorcontrib>Willott, Chris J.</creatorcontrib><creatorcontrib>Fullerton, Alexander W.</creatorcontrib><creatorcontrib>LaMassa, Stephanie</creatorcontrib><creatorcontrib>Hutchings, John B.</creatorcontrib><creatorcontrib>Rowlands, Neil</creatorcontrib><creatorcontrib>Begoña Vila, M.</creatorcontrib><creatorcontrib>Zhou, Julia</creatorcontrib><creatorcontrib>Aldridge, David</creatorcontrib><creatorcontrib>Maszkiewicz, Michael</creatorcontrib><creatorcontrib>Beaulieu, Mathilde</creatorcontrib><creatorcontrib>Cook, Neil J.</creatorcontrib><creatorcontrib>Piaulet, Caroline</creatorcontrib><creatorcontrib>Roy, Pierre-Alexis</creatorcontrib><creatorcontrib>Lamontagne, Pierrot</creatorcontrib><creatorcontrib>Morel, Kim</creatorcontrib><creatorcontrib>Frost, William</creatorcontrib><creatorcontrib>Salhi, Salma</creatorcontrib><creatorcontrib>Coulombe, Louis-Philippe</creatorcontrib><creatorcontrib>Benneke, Björn</creatorcontrib><creatorcontrib>MacDonald, Ryan J.</creatorcontrib><creatorcontrib>Johnstone, Doug</creatorcontrib><creatorcontrib>Turner, Jake D.</creatorcontrib><creatorcontrib>Fournier-Tondreau, Marylou</creatorcontrib><creatorcontrib>Allart, Romain</creatorcontrib><creatorcontrib>Kaltenegger, Lisa</creatorcontrib><title>The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. III. Single Object Slitless Spectroscopy</title><title>Publications of the Astronomical Society of the Pacific</title><addtitle>Publ. Astron. Soc. Pac</addtitle><description>Abstract The Near Infrared Imager and Slitless Spectrograph instrument (NIRISS) is the Canadian Space Agency contribution to the suite of four science instruments of the James Webb Space Telescope. As one of the three NIRISS observing modes, the Single Object Slitless Spectroscopy (SOSS) mode is tailor-made to undertake time-series observations of exoplanets to perform transit spectroscopy. The SOSS permits observing point sources between 0.6 and 2.8 μ m at a resolving power of 650 at 1.25 μ m using a slitless cross-dispersing grism while its defocussing cylindrical lens enables observing targets as bright as J = 6.7 by spreading light across 23 pixels along the cross-dispersion axis. This paper officially presents the design of the SOSS mode, its operation, characterization, and its performance, from ground-based testing and flight-based commissioning. On-sky measurements demonstrate a peak photon conversion efficiency of 55% at 1.2 μ m. The first time series on the A-type star BD+60°1753 achieves a flux stability close to the photon-noise limit, so far tested to a level of 20 parts per million on a 40 minute timescale after simply subtracting a long-term trend. Uncorrected 1/ f noise residuals underneath the spectral traces add an extra source of noise equivalent to doubling the readout noise. Preliminary analysis of an HAT-P-14b transit time series indicates that it is difficult to remove all of the noise in pixels with partially saturated ramps. Overall, the SOSS delivers performance at the level required to tackle key exoplanetary science programs such as detecting secondary atmospheres on terrestrial planets and measuring abundances of several chemical species in gas giants.</description><subject>Astronomical instrumentation</subject><subject>Chemical speciation</subject><subject>Exoplanet atmospheres</subject><subject>Extrasolar planets</subject><subject>Gas giant planets</subject><subject>Infrared astronomy</subject><subject>Noise</subject><subject>Space telescopes</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Terrestrial planets</subject><subject>Time series</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwM1piJe05thNnRBUfQRUdWsRoXRynTZUmwQlDJ_46joJgQEyWzs_z3ukl5JrBjIFScya5CriK-RxNHiM_IZOf0SmZAIAIolDBObnouj0AY4rBhHxudpa-WHQ0rQuHzuY0PeDWOop1TtdV2Ve26-i6taZ3zdZhu6NF42jvtWc82I6-2Szz_2gs3VgPm6a1M5qm6Yyuy3pbWbrK9t7-EzaQx0tyVmDV2avvd0peH-43i6dguXpMF3fLwHAJfRChRCHQZmEocykgRxQYxZwlQmRFZoyRLIEoiqUpEsGBQZGrJOahkELJBPmU3Iy5rWveP2zX633z4Wq_UnOQgg8KeApGyvjzOmcL3brygO6oGeihZj10qodO9VizV25HpWza38x_8S-ut34H</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Albert, Loïc</creator><creator>Lafrenière, David</creator><creator>Doyon, René</creator><creator>Artigau, Étienne</creator><creator>Volk, Kevin</creator><creator>Goudfrooij, Paul</creator><creator>Martel, André R.</creator><creator>Radica, Michael</creator><creator>Rowe, Jason</creator><creator>Espinoza, Néstor</creator><creator>Roy, Arpita</creator><creator>Filippazzo, Joseph C.</creator><creator>Darveau-Bernier, Antoine</creator><creator>Talens, Geert Jan</creator><creator>Sivaramakrishnan, Anand</creator><creator>Willott, Chris J.</creator><creator>Fullerton, Alexander W.</creator><creator>LaMassa, Stephanie</creator><creator>Hutchings, John B.</creator><creator>Rowlands, Neil</creator><creator>Begoña Vila, M.</creator><creator>Zhou, Julia</creator><creator>Aldridge, David</creator><creator>Maszkiewicz, Michael</creator><creator>Beaulieu, Mathilde</creator><creator>Cook, Neil J.</creator><creator>Piaulet, Caroline</creator><creator>Roy, Pierre-Alexis</creator><creator>Lamontagne, Pierrot</creator><creator>Morel, Kim</creator><creator>Frost, William</creator><creator>Salhi, Salma</creator><creator>Coulombe, Louis-Philippe</creator><creator>Benneke, Björn</creator><creator>MacDonald, Ryan J.</creator><creator>Johnstone, Doug</creator><creator>Turner, Jake D.</creator><creator>Fournier-Tondreau, Marylou</creator><creator>Allart, Romain</creator><creator>Kaltenegger, Lisa</creator><general>The Astronomical Society of the Pacific</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><orcidid>https://orcid.org/0000-0002-2875-917X</orcidid><orcidid>https://orcid.org/0000-0001-6809-3520</orcidid><orcidid>https://orcid.org/0000-0001-7836-1787</orcidid><orcidid>https://orcid.org/0000-0001-5485-4675</orcidid><orcidid>https://orcid.org/0000-0003-4166-4121</orcidid><orcidid>https://orcid.org/0000-0002-1199-9759</orcidid><orcidid>https://orcid.org/0000-0003-4816-3469</orcidid><orcidid>https://orcid.org/0000-0003-3506-5667</orcidid><orcidid>https://orcid.org/0000-0002-3328-1203</orcidid><orcidid>https://orcid.org/0000-0002-0436-1802</orcidid><orcidid>https://orcid.org/0000-0001-5578-1498</orcidid><orcidid>https://orcid.org/0000-0002-5428-0453</orcidid><orcidid>https://orcid.org/0000-0002-2195-735X</orcidid><orcidid>https://orcid.org/0000-0002-6780-4252</orcidid><orcidid>https://orcid.org/0000-0002-5728-1427</orcidid><orcidid>https://orcid.org/0000-0002-0201-8306</orcidid><orcidid>https://orcid.org/0000-0003-3504-1569</orcidid><orcidid>https://orcid.org/0000-0002-5907-3330</orcidid><orcidid>https://orcid.org/0000-0003-2429-7964</orcidid><orcidid>https://orcid.org/0000-0001-9513-1449</orcidid><orcidid>https://orcid.org/0000-0001-6758-7924</orcidid><orcidid>https://orcid.org/0000-0002-6773-459X</orcidid><orcidid>https://orcid.org/0000-0002-3824-8832</orcidid><orcidid>https://orcid.org/0000-0001-8127-5775</orcidid><orcidid>https://orcid.org/0000-0003-4787-2335</orcidid><orcidid>https://orcid.org/0000-0002-5904-1865</orcidid><orcidid>https://orcid.org/0000-0002-4201-7367</orcidid><orcidid>https://orcid.org/0000-0003-0475-9375</orcidid><orcidid>https://orcid.org/0000-0002-1715-7069</orcidid><orcidid>https://orcid.org/0000-0003-1251-4124</orcidid><orcidid>https://orcid.org/0000-0002-7786-0661</orcidid></search><sort><creationdate>20230701</creationdate><title>The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. III. Single Object Slitless Spectroscopy</title><author>Albert, Loïc ; Lafrenière, David ; Doyon, René ; Artigau, Étienne ; Volk, Kevin ; Goudfrooij, Paul ; Martel, André R. ; Radica, Michael ; Rowe, Jason ; Espinoza, Néstor ; Roy, Arpita ; Filippazzo, Joseph C. ; Darveau-Bernier, Antoine ; Talens, Geert Jan ; Sivaramakrishnan, Anand ; Willott, Chris J. ; Fullerton, Alexander W. ; LaMassa, Stephanie ; Hutchings, John B. ; Rowlands, Neil ; Begoña Vila, M. ; Zhou, Julia ; Aldridge, David ; Maszkiewicz, Michael ; Beaulieu, Mathilde ; Cook, Neil J. ; Piaulet, Caroline ; Roy, Pierre-Alexis ; Lamontagne, Pierrot ; Morel, Kim ; Frost, William ; Salhi, Salma ; Coulombe, Louis-Philippe ; Benneke, Björn ; MacDonald, Ryan J. ; Johnstone, Doug ; Turner, Jake D. ; Fournier-Tondreau, Marylou ; Allart, Romain ; Kaltenegger, Lisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-6a5a44aeb225d540daa4a6731944bfbccc51906675cf943010fd89732454859a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astronomical instrumentation</topic><topic>Chemical speciation</topic><topic>Exoplanet atmospheres</topic><topic>Extrasolar planets</topic><topic>Gas giant planets</topic><topic>Infrared astronomy</topic><topic>Noise</topic><topic>Space telescopes</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Terrestrial planets</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albert, Loïc</creatorcontrib><creatorcontrib>Lafrenière, David</creatorcontrib><creatorcontrib>Doyon, René</creatorcontrib><creatorcontrib>Artigau, Étienne</creatorcontrib><creatorcontrib>Volk, Kevin</creatorcontrib><creatorcontrib>Goudfrooij, Paul</creatorcontrib><creatorcontrib>Martel, André R.</creatorcontrib><creatorcontrib>Radica, Michael</creatorcontrib><creatorcontrib>Rowe, Jason</creatorcontrib><creatorcontrib>Espinoza, Néstor</creatorcontrib><creatorcontrib>Roy, Arpita</creatorcontrib><creatorcontrib>Filippazzo, Joseph C.</creatorcontrib><creatorcontrib>Darveau-Bernier, Antoine</creatorcontrib><creatorcontrib>Talens, Geert Jan</creatorcontrib><creatorcontrib>Sivaramakrishnan, Anand</creatorcontrib><creatorcontrib>Willott, Chris J.</creatorcontrib><creatorcontrib>Fullerton, Alexander W.</creatorcontrib><creatorcontrib>LaMassa, Stephanie</creatorcontrib><creatorcontrib>Hutchings, John B.</creatorcontrib><creatorcontrib>Rowlands, Neil</creatorcontrib><creatorcontrib>Begoña Vila, M.</creatorcontrib><creatorcontrib>Zhou, Julia</creatorcontrib><creatorcontrib>Aldridge, David</creatorcontrib><creatorcontrib>Maszkiewicz, Michael</creatorcontrib><creatorcontrib>Beaulieu, Mathilde</creatorcontrib><creatorcontrib>Cook, Neil J.</creatorcontrib><creatorcontrib>Piaulet, Caroline</creatorcontrib><creatorcontrib>Roy, Pierre-Alexis</creatorcontrib><creatorcontrib>Lamontagne, Pierrot</creatorcontrib><creatorcontrib>Morel, Kim</creatorcontrib><creatorcontrib>Frost, William</creatorcontrib><creatorcontrib>Salhi, Salma</creatorcontrib><creatorcontrib>Coulombe, Louis-Philippe</creatorcontrib><creatorcontrib>Benneke, Björn</creatorcontrib><creatorcontrib>MacDonald, Ryan J.</creatorcontrib><creatorcontrib>Johnstone, Doug</creatorcontrib><creatorcontrib>Turner, Jake D.</creatorcontrib><creatorcontrib>Fournier-Tondreau, Marylou</creatorcontrib><creatorcontrib>Allart, Romain</creatorcontrib><creatorcontrib>Kaltenegger, Lisa</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albert, Loïc</au><au>Lafrenière, David</au><au>Doyon, René</au><au>Artigau, Étienne</au><au>Volk, Kevin</au><au>Goudfrooij, Paul</au><au>Martel, André R.</au><au>Radica, Michael</au><au>Rowe, Jason</au><au>Espinoza, Néstor</au><au>Roy, Arpita</au><au>Filippazzo, Joseph C.</au><au>Darveau-Bernier, Antoine</au><au>Talens, Geert Jan</au><au>Sivaramakrishnan, Anand</au><au>Willott, Chris J.</au><au>Fullerton, Alexander W.</au><au>LaMassa, Stephanie</au><au>Hutchings, John B.</au><au>Rowlands, Neil</au><au>Begoña Vila, M.</au><au>Zhou, Julia</au><au>Aldridge, David</au><au>Maszkiewicz, Michael</au><au>Beaulieu, Mathilde</au><au>Cook, Neil J.</au><au>Piaulet, Caroline</au><au>Roy, Pierre-Alexis</au><au>Lamontagne, Pierrot</au><au>Morel, Kim</au><au>Frost, William</au><au>Salhi, Salma</au><au>Coulombe, Louis-Philippe</au><au>Benneke, Björn</au><au>MacDonald, Ryan J.</au><au>Johnstone, Doug</au><au>Turner, Jake D.</au><au>Fournier-Tondreau, Marylou</au><au>Allart, Romain</au><au>Kaltenegger, Lisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. III. Single Object Slitless Spectroscopy</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><addtitle>Publ. Astron. Soc. Pac</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>135</volume><issue>1049</issue><spage>75001</spage><pages>75001-</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><notes>PASP-101506.R1</notes><abstract>Abstract The Near Infrared Imager and Slitless Spectrograph instrument (NIRISS) is the Canadian Space Agency contribution to the suite of four science instruments of the James Webb Space Telescope. As one of the three NIRISS observing modes, the Single Object Slitless Spectroscopy (SOSS) mode is tailor-made to undertake time-series observations of exoplanets to perform transit spectroscopy. The SOSS permits observing point sources between 0.6 and 2.8 μ m at a resolving power of 650 at 1.25 μ m using a slitless cross-dispersing grism while its defocussing cylindrical lens enables observing targets as bright as J = 6.7 by spreading light across 23 pixels along the cross-dispersion axis. This paper officially presents the design of the SOSS mode, its operation, characterization, and its performance, from ground-based testing and flight-based commissioning. On-sky measurements demonstrate a peak photon conversion efficiency of 55% at 1.2 μ m. The first time series on the A-type star BD+60°1753 achieves a flux stability close to the photon-noise limit, so far tested to a level of 20 parts per million on a 40 minute timescale after simply subtracting a long-term trend. Uncorrected 1/ f noise residuals underneath the spectral traces add an extra source of noise equivalent to doubling the readout noise. Preliminary analysis of an HAT-P-14b transit time series indicates that it is difficult to remove all of the noise in pixels with partially saturated ramps. Overall, the SOSS delivers performance at the level required to tackle key exoplanetary science programs such as detecting secondary atmospheres on terrestrial planets and measuring abundances of several chemical species in gas giants.</abstract><cop>Philadelphia</cop><pub>The Astronomical Society of the Pacific</pub><doi>10.1088/1538-3873/acd7a3</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-2875-917X</orcidid><orcidid>https://orcid.org/0000-0001-6809-3520</orcidid><orcidid>https://orcid.org/0000-0001-7836-1787</orcidid><orcidid>https://orcid.org/0000-0001-5485-4675</orcidid><orcidid>https://orcid.org/0000-0003-4166-4121</orcidid><orcidid>https://orcid.org/0000-0002-1199-9759</orcidid><orcidid>https://orcid.org/0000-0003-4816-3469</orcidid><orcidid>https://orcid.org/0000-0003-3506-5667</orcidid><orcidid>https://orcid.org/0000-0002-3328-1203</orcidid><orcidid>https://orcid.org/0000-0002-0436-1802</orcidid><orcidid>https://orcid.org/0000-0001-5578-1498</orcidid><orcidid>https://orcid.org/0000-0002-5428-0453</orcidid><orcidid>https://orcid.org/0000-0002-2195-735X</orcidid><orcidid>https://orcid.org/0000-0002-6780-4252</orcidid><orcidid>https://orcid.org/0000-0002-5728-1427</orcidid><orcidid>https://orcid.org/0000-0002-0201-8306</orcidid><orcidid>https://orcid.org/0000-0003-3504-1569</orcidid><orcidid>https://orcid.org/0000-0002-5907-3330</orcidid><orcidid>https://orcid.org/0000-0003-2429-7964</orcidid><orcidid>https://orcid.org/0000-0001-9513-1449</orcidid><orcidid>https://orcid.org/0000-0001-6758-7924</orcidid><orcidid>https://orcid.org/0000-0002-6773-459X</orcidid><orcidid>https://orcid.org/0000-0002-3824-8832</orcidid><orcidid>https://orcid.org/0000-0001-8127-5775</orcidid><orcidid>https://orcid.org/0000-0003-4787-2335</orcidid><orcidid>https://orcid.org/0000-0002-5904-1865</orcidid><orcidid>https://orcid.org/0000-0002-4201-7367</orcidid><orcidid>https://orcid.org/0000-0003-0475-9375</orcidid><orcidid>https://orcid.org/0000-0002-1715-7069</orcidid><orcidid>https://orcid.org/0000-0003-1251-4124</orcidid><orcidid>https://orcid.org/0000-0002-7786-0661</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6280
ispartof Publications of the Astronomical Society of the Pacific, 2023-07, Vol.135 (1049), p.75001
issn 0004-6280
1538-3873
language eng
recordid cdi_proquest_journals_3054330100
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Astronomical instrumentation
Chemical speciation
Exoplanet atmospheres
Extrasolar planets
Gas giant planets
Infrared astronomy
Noise
Space telescopes
Spectroscopy
Spectrum analysis
Terrestrial planets
Time series
title The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. III. Single Object Slitless Spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T05%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Near%20Infrared%20Imager%20and%20Slitless%20Spectrograph%20for%20the%20James%20Webb%20Space%20Telescope.%20III.%20Single%20Object%20Slitless%20Spectroscopy&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Albert,%20Lo%C3%AFc&rft.date=2023-07-01&rft.volume=135&rft.issue=1049&rft.spage=75001&rft.pages=75001-&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/10.1088/1538-3873/acd7a3&rft_dat=%3Cproquest_cross%3E3054330100%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-6a5a44aeb225d540daa4a6731944bfbccc51906675cf943010fd89732454859a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3054330100&rft_id=info:pmid/&rfr_iscdi=true