Loading…

Nanoporous polyethylene microfibres for large-scale radiative cooling fabric

Global warming and energy crises severely limit the ability of human civilization to develop along a sustainable path. Increasing renewable energy sources and decreasing energy consumption are fundamental steps to achieve sustainability. Technological innovations that allow energy-saving behaviour c...

Full description

Saved in:
Bibliographic Details
Published in:Nature sustainability 2018-02, Vol.1 (2), p.105-112
Main Authors: Peng, Yucan, Chen, Jun, Song, Alex Y., Catrysse, Peter B., Hsu, Po-Chun, Cai, Lili, Liu, Bofei, Zhu, Yangying, Zhou, Guangmin, Wu, David S., Lee, Hye Ryoung, Fan, Shanhui, Cui, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-8a8f2e3bb08f6160a5def448e8f817471f91ea7f829fd43a359d803c7e6b57b23
cites cdi_FETCH-LOGICAL-c339t-8a8f2e3bb08f6160a5def448e8f817471f91ea7f829fd43a359d803c7e6b57b23
container_end_page 112
container_issue 2
container_start_page 105
container_title Nature sustainability
container_volume 1
creator Peng, Yucan
Chen, Jun
Song, Alex Y.
Catrysse, Peter B.
Hsu, Po-Chun
Cai, Lili
Liu, Bofei
Zhu, Yangying
Zhou, Guangmin
Wu, David S.
Lee, Hye Ryoung
Fan, Shanhui
Cui, Yi
description Global warming and energy crises severely limit the ability of human civilization to develop along a sustainable path. Increasing renewable energy sources and decreasing energy consumption are fundamental steps to achieve sustainability. Technological innovations that allow energy-saving behaviour can support sustainable development pathways. Energy-saving fabrics with a superior cooling effect and satisfactory wearability properties provide a novel way of saving the energy used by indoor cooling systems. Here, we report the large-scale extrusion of uniform and continuous nanoporous polyethylene (nanoPE) microfibres with cotton-like softness for industrial fabric production. The nanopores embedded in the fibre effectively scatter visible light to make it opaque without compromising the mid-infrared transparency. Moreover, using industrial machines, the nanoPE microfibres are utilized to mass produce fabrics. Compared with commercial cotton fabric of the same thickness, the nanoPE fabric exhibits a great cooling power, lowering the human skin temperature by 2.3 °C, which corresponds to a greater than 20% saving on indoor cooling energy. Besides the superior cooling effect, the nanoPE fabric also displays impressive wearability and durability. As a result, nanoPE microfibres represent basic building blocks to revolutionize fabrics for human body cooling and pave an innovative way to sustainable energy.Energy-saving innovations, such as fabrics with cooling effects, contribute to sustainability. This study reports the large-scale extrusion of uniform and continuous nanoporous polyethylene microfibres with cotton-like softness for wearable fabrics. The fabric can lower human skin temperature by 2.3 °C with over 20% savings on indoor cooling energy.
doi_str_mv 10.1038/s41893-018-0023-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3049264981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049264981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-8a8f2e3bb08f6160a5def448e8f817471f91ea7f829fd43a359d803c7e6b57b23</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpB7CzxNrgV5LxElU8KlWwgbXlJOPiKo2DnSL170kVFqzmLo7u1RxCbgW_F1zBQ9YCjGJcAONcKiYvyEIqA8yU0lz-y9dklfOeTxDXYLRekO2b6-MQUzxmOsTuhOPXqcMe6SE0KfpQJ8zUx0Q7l3bIcuM6pMm1wY3hB2kTYxf6HfWuTqG5IVfedRlXf3dJPp-fPtavbPv-slk_blmjlBkZOPASVV1z8KUouSta9FoDggdR6Up4I9BVHqTxrVZOFaYFrpoKy7qoaqmW5G7uHVL8PmIe7T4eUz9NWsW1kaU2ICZKzNT0SM4JvR1SOLh0soLbszc7e7OTN3v2ZqX6BUdiYOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049264981</pqid></control><display><type>article</type><title>Nanoporous polyethylene microfibres for large-scale radiative cooling fabric</title><source>Nature_系列刊</source><creator>Peng, Yucan ; Chen, Jun ; Song, Alex Y. ; Catrysse, Peter B. ; Hsu, Po-Chun ; Cai, Lili ; Liu, Bofei ; Zhu, Yangying ; Zhou, Guangmin ; Wu, David S. ; Lee, Hye Ryoung ; Fan, Shanhui ; Cui, Yi</creator><creatorcontrib>Peng, Yucan ; Chen, Jun ; Song, Alex Y. ; Catrysse, Peter B. ; Hsu, Po-Chun ; Cai, Lili ; Liu, Bofei ; Zhu, Yangying ; Zhou, Guangmin ; Wu, David S. ; Lee, Hye Ryoung ; Fan, Shanhui ; Cui, Yi</creatorcontrib><description>Global warming and energy crises severely limit the ability of human civilization to develop along a sustainable path. Increasing renewable energy sources and decreasing energy consumption are fundamental steps to achieve sustainability. Technological innovations that allow energy-saving behaviour can support sustainable development pathways. Energy-saving fabrics with a superior cooling effect and satisfactory wearability properties provide a novel way of saving the energy used by indoor cooling systems. Here, we report the large-scale extrusion of uniform and continuous nanoporous polyethylene (nanoPE) microfibres with cotton-like softness for industrial fabric production. The nanopores embedded in the fibre effectively scatter visible light to make it opaque without compromising the mid-infrared transparency. Moreover, using industrial machines, the nanoPE microfibres are utilized to mass produce fabrics. Compared with commercial cotton fabric of the same thickness, the nanoPE fabric exhibits a great cooling power, lowering the human skin temperature by 2.3 °C, which corresponds to a greater than 20% saving on indoor cooling energy. Besides the superior cooling effect, the nanoPE fabric also displays impressive wearability and durability. As a result, nanoPE microfibres represent basic building blocks to revolutionize fabrics for human body cooling and pave an innovative way to sustainable energy.Energy-saving innovations, such as fabrics with cooling effects, contribute to sustainability. This study reports the large-scale extrusion of uniform and continuous nanoporous polyethylene microfibres with cotton-like softness for wearable fabrics. The fabric can lower human skin temperature by 2.3 °C with over 20% savings on indoor cooling energy.</description><identifier>ISSN: 2398-9629</identifier><identifier>EISSN: 2398-9629</identifier><identifier>DOI: 10.1038/s41893-018-0023-2</identifier><language>eng</language><publisher>Berlin: Nature Publishing Group</publisher><subject>Alternative energy ; Climate change ; Cooling ; Cooling systems ; Cotton ; Energy conservation ; Energy consumption ; Energy resources ; Fabrics ; Global warming ; Innovation ; Innovations ; Polyethylene ; Renewable energy ; Renewable energy sources ; Sustainability ; Sustainable development ; Sustainable energy ; Technological change</subject><ispartof>Nature sustainability, 2018-02, Vol.1 (2), p.105-112</ispartof><rights>The Author(s) 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-8a8f2e3bb08f6160a5def448e8f817471f91ea7f829fd43a359d803c7e6b57b23</citedby><cites>FETCH-LOGICAL-c339t-8a8f2e3bb08f6160a5def448e8f817471f91ea7f829fd43a359d803c7e6b57b23</cites><orcidid>0000-0003-0307-2184 ; 0000-0002-3439-0495 ; 0000-0001-7852-1541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Peng, Yucan</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Song, Alex Y.</creatorcontrib><creatorcontrib>Catrysse, Peter B.</creatorcontrib><creatorcontrib>Hsu, Po-Chun</creatorcontrib><creatorcontrib>Cai, Lili</creatorcontrib><creatorcontrib>Liu, Bofei</creatorcontrib><creatorcontrib>Zhu, Yangying</creatorcontrib><creatorcontrib>Zhou, Guangmin</creatorcontrib><creatorcontrib>Wu, David S.</creatorcontrib><creatorcontrib>Lee, Hye Ryoung</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><title>Nanoporous polyethylene microfibres for large-scale radiative cooling fabric</title><title>Nature sustainability</title><description>Global warming and energy crises severely limit the ability of human civilization to develop along a sustainable path. Increasing renewable energy sources and decreasing energy consumption are fundamental steps to achieve sustainability. Technological innovations that allow energy-saving behaviour can support sustainable development pathways. Energy-saving fabrics with a superior cooling effect and satisfactory wearability properties provide a novel way of saving the energy used by indoor cooling systems. Here, we report the large-scale extrusion of uniform and continuous nanoporous polyethylene (nanoPE) microfibres with cotton-like softness for industrial fabric production. The nanopores embedded in the fibre effectively scatter visible light to make it opaque without compromising the mid-infrared transparency. Moreover, using industrial machines, the nanoPE microfibres are utilized to mass produce fabrics. Compared with commercial cotton fabric of the same thickness, the nanoPE fabric exhibits a great cooling power, lowering the human skin temperature by 2.3 °C, which corresponds to a greater than 20% saving on indoor cooling energy. Besides the superior cooling effect, the nanoPE fabric also displays impressive wearability and durability. As a result, nanoPE microfibres represent basic building blocks to revolutionize fabrics for human body cooling and pave an innovative way to sustainable energy.Energy-saving innovations, such as fabrics with cooling effects, contribute to sustainability. This study reports the large-scale extrusion of uniform and continuous nanoporous polyethylene microfibres with cotton-like softness for wearable fabrics. The fabric can lower human skin temperature by 2.3 °C with over 20% savings on indoor cooling energy.</description><subject>Alternative energy</subject><subject>Climate change</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Cotton</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy resources</subject><subject>Fabrics</subject><subject>Global warming</subject><subject>Innovation</subject><subject>Innovations</subject><subject>Polyethylene</subject><subject>Renewable energy</subject><subject>Renewable energy sources</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Sustainable energy</subject><subject>Technological change</subject><issn>2398-9629</issn><issn>2398-9629</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EElXpB7CzxNrgV5LxElU8KlWwgbXlJOPiKo2DnSL170kVFqzmLo7u1RxCbgW_F1zBQ9YCjGJcAONcKiYvyEIqA8yU0lz-y9dklfOeTxDXYLRekO2b6-MQUzxmOsTuhOPXqcMe6SE0KfpQJ8zUx0Q7l3bIcuM6pMm1wY3hB2kTYxf6HfWuTqG5IVfedRlXf3dJPp-fPtavbPv-slk_blmjlBkZOPASVV1z8KUouSta9FoDggdR6Up4I9BVHqTxrVZOFaYFrpoKy7qoaqmW5G7uHVL8PmIe7T4eUz9NWsW1kaU2ICZKzNT0SM4JvR1SOLh0soLbszc7e7OTN3v2ZqX6BUdiYOg</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Peng, Yucan</creator><creator>Chen, Jun</creator><creator>Song, Alex Y.</creator><creator>Catrysse, Peter B.</creator><creator>Hsu, Po-Chun</creator><creator>Cai, Lili</creator><creator>Liu, Bofei</creator><creator>Zhu, Yangying</creator><creator>Zhou, Guangmin</creator><creator>Wu, David S.</creator><creator>Lee, Hye Ryoung</creator><creator>Fan, Shanhui</creator><creator>Cui, Yi</creator><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0307-2184</orcidid><orcidid>https://orcid.org/0000-0002-3439-0495</orcidid><orcidid>https://orcid.org/0000-0001-7852-1541</orcidid></search><sort><creationdate>20180201</creationdate><title>Nanoporous polyethylene microfibres for large-scale radiative cooling fabric</title><author>Peng, Yucan ; Chen, Jun ; Song, Alex Y. ; Catrysse, Peter B. ; Hsu, Po-Chun ; Cai, Lili ; Liu, Bofei ; Zhu, Yangying ; Zhou, Guangmin ; Wu, David S. ; Lee, Hye Ryoung ; Fan, Shanhui ; Cui, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-8a8f2e3bb08f6160a5def448e8f817471f91ea7f829fd43a359d803c7e6b57b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alternative energy</topic><topic>Climate change</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Cotton</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy resources</topic><topic>Fabrics</topic><topic>Global warming</topic><topic>Innovation</topic><topic>Innovations</topic><topic>Polyethylene</topic><topic>Renewable energy</topic><topic>Renewable energy sources</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Sustainable energy</topic><topic>Technological change</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Yucan</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Song, Alex Y.</creatorcontrib><creatorcontrib>Catrysse, Peter B.</creatorcontrib><creatorcontrib>Hsu, Po-Chun</creatorcontrib><creatorcontrib>Cai, Lili</creatorcontrib><creatorcontrib>Liu, Bofei</creatorcontrib><creatorcontrib>Zhu, Yangying</creatorcontrib><creatorcontrib>Zhou, Guangmin</creatorcontrib><creatorcontrib>Wu, David S.</creatorcontrib><creatorcontrib>Lee, Hye Ryoung</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><collection>CrossRef</collection><jtitle>Nature sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Yucan</au><au>Chen, Jun</au><au>Song, Alex Y.</au><au>Catrysse, Peter B.</au><au>Hsu, Po-Chun</au><au>Cai, Lili</au><au>Liu, Bofei</au><au>Zhu, Yangying</au><au>Zhou, Guangmin</au><au>Wu, David S.</au><au>Lee, Hye Ryoung</au><au>Fan, Shanhui</au><au>Cui, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoporous polyethylene microfibres for large-scale radiative cooling fabric</atitle><jtitle>Nature sustainability</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>1</volume><issue>2</issue><spage>105</spage><epage>112</epage><pages>105-112</pages><issn>2398-9629</issn><eissn>2398-9629</eissn><abstract>Global warming and energy crises severely limit the ability of human civilization to develop along a sustainable path. Increasing renewable energy sources and decreasing energy consumption are fundamental steps to achieve sustainability. Technological innovations that allow energy-saving behaviour can support sustainable development pathways. Energy-saving fabrics with a superior cooling effect and satisfactory wearability properties provide a novel way of saving the energy used by indoor cooling systems. Here, we report the large-scale extrusion of uniform and continuous nanoporous polyethylene (nanoPE) microfibres with cotton-like softness for industrial fabric production. The nanopores embedded in the fibre effectively scatter visible light to make it opaque without compromising the mid-infrared transparency. Moreover, using industrial machines, the nanoPE microfibres are utilized to mass produce fabrics. Compared with commercial cotton fabric of the same thickness, the nanoPE fabric exhibits a great cooling power, lowering the human skin temperature by 2.3 °C, which corresponds to a greater than 20% saving on indoor cooling energy. Besides the superior cooling effect, the nanoPE fabric also displays impressive wearability and durability. As a result, nanoPE microfibres represent basic building blocks to revolutionize fabrics for human body cooling and pave an innovative way to sustainable energy.Energy-saving innovations, such as fabrics with cooling effects, contribute to sustainability. This study reports the large-scale extrusion of uniform and continuous nanoporous polyethylene microfibres with cotton-like softness for wearable fabrics. The fabric can lower human skin temperature by 2.3 °C with over 20% savings on indoor cooling energy.</abstract><cop>Berlin</cop><pub>Nature Publishing Group</pub><doi>10.1038/s41893-018-0023-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0307-2184</orcidid><orcidid>https://orcid.org/0000-0002-3439-0495</orcidid><orcidid>https://orcid.org/0000-0001-7852-1541</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2398-9629
ispartof Nature sustainability, 2018-02, Vol.1 (2), p.105-112
issn 2398-9629
2398-9629
language eng
recordid cdi_proquest_journals_3049264981
source Nature_系列刊
subjects Alternative energy
Climate change
Cooling
Cooling systems
Cotton
Energy conservation
Energy consumption
Energy resources
Fabrics
Global warming
Innovation
Innovations
Polyethylene
Renewable energy
Renewable energy sources
Sustainability
Sustainable development
Sustainable energy
Technological change
title Nanoporous polyethylene microfibres for large-scale radiative cooling fabric
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T04%3A28%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoporous%20polyethylene%20microfibres%20for%20large-scale%20radiative%20cooling%20fabric&rft.jtitle=Nature%20sustainability&rft.au=Peng,%20Yucan&rft.date=2018-02-01&rft.volume=1&rft.issue=2&rft.spage=105&rft.epage=112&rft.pages=105-112&rft.issn=2398-9629&rft.eissn=2398-9629&rft_id=info:doi/10.1038/s41893-018-0023-2&rft_dat=%3Cproquest_cross%3E3049264981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-8a8f2e3bb08f6160a5def448e8f817471f91ea7f829fd43a359d803c7e6b57b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049264981&rft_id=info:pmid/&rfr_iscdi=true