Loading…

Valleytronics in bulk MoS2 with a topologic optical field

The valley degree of freedom14 of electrons in materials promises routes towards energy-efficient information storage with enticing prospects for quantum information processing5 7. Current challenges in utilizing valley polarization are symmetry conditions that require monolayer structures8,9 or spe...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2024-04, Vol.628 (8009), p.746-751F
Main Authors: Tyulnev, Igor, Jiménez-Galán, Alvaro, Poborska, Julita, Vamos, Lenard, Russell, Philip ST J, Tani, Francesco, Smirnova, Olga, Ivanov, Misha, Silva, Rui E F, Biegert, Jens
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 751F
container_issue 8009
container_start_page 746
container_title Nature (London)
container_volume 628
creator Tyulnev, Igor
Jiménez-Galán, Alvaro
Poborska, Julita
Vamos, Lenard
Russell, Philip ST J
Tani, Francesco
Smirnova, Olga
Ivanov, Misha
Silva, Rui E F
Biegert, Jens
description The valley degree of freedom14 of electrons in materials promises routes towards energy-efficient information storage with enticing prospects for quantum information processing5 7. Current challenges in utilizing valley polarization are symmetry conditions that require monolayer structures8,9 or specific material engineering10 13, non-resonant optical control to avoid energy dissipation and the ability to switch valley polarization at optical speed. We demonstrate all-optical and non-resonant control over valley polarization using bulk MoS2, a centrosymmetric material without Berry curvature at the valleys. Our universal method utilizes spin angular momentum-shaped trefoil optical control pulses14,15 to switch the material's electronic topology and induce valley polarization by transiently breaking time and space inversion symmetry16 through a simple phase rotation. We confirm valley polarization through the transient generation of the second harmonic of a non-collinear optical probe pulse, depending on the trefoil phase rotation. The investigation shows that direct optical control over the valley degree of freedom is not limited to monolayer structures. Indeed, such control is possible for systems with an arbitrary number of layers and for bulk materials. Non-resonant valley control is universal and, at optical speeds, unlocks the possibility of engineering efficient multimaterial valleytronic devices operating on quantum coherent timescales.
doi_str_mv 10.1038/s41586-O24-O7156-y
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3048972473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3048972473</sourcerecordid><originalsourceid>FETCH-proquest_journals_30489724733</originalsourceid><addsrcrecordid>eNqNyrsOwiAYQGFiNLFeXsCJxBn9KRTobDQupoPGtcHaKpWUWmiMb6-DD-B0hu8gtKCwosDU2nOaKEGymJNM0kSQ9wBFlEtBuFByiCKAWBFQTIzRxPsaABIqeYTSs7a2fIfONabw2DT40tsHPrhjjF8m3LHGwbXOupspsGuDKbTFlSntdYZGlba-nP86Rcvd9rTZk7Zzz770Ia9d3zVfyhlwlcqYS8b-uz4D9T1r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3048972473</pqid></control><display><type>article</type><title>Valleytronics in bulk MoS2 with a topologic optical field</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Tyulnev, Igor ; Jiménez-Galán, Alvaro ; Poborska, Julita ; Vamos, Lenard ; Russell, Philip ST J ; Tani, Francesco ; Smirnova, Olga ; Ivanov, Misha ; Silva, Rui E F ; Biegert, Jens</creator><creatorcontrib>Tyulnev, Igor ; Jiménez-Galán, Alvaro ; Poborska, Julita ; Vamos, Lenard ; Russell, Philip ST J ; Tani, Francesco ; Smirnova, Olga ; Ivanov, Misha ; Silva, Rui E F ; Biegert, Jens</creatorcontrib><description>The valley degree of freedom14 of electrons in materials promises routes towards energy-efficient information storage with enticing prospects for quantum information processing5 7. Current challenges in utilizing valley polarization are symmetry conditions that require monolayer structures8,9 or specific material engineering10 13, non-resonant optical control to avoid energy dissipation and the ability to switch valley polarization at optical speed. We demonstrate all-optical and non-resonant control over valley polarization using bulk MoS2, a centrosymmetric material without Berry curvature at the valleys. Our universal method utilizes spin angular momentum-shaped trefoil optical control pulses14,15 to switch the material's electronic topology and induce valley polarization by transiently breaking time and space inversion symmetry16 through a simple phase rotation. We confirm valley polarization through the transient generation of the second harmonic of a non-collinear optical probe pulse, depending on the trefoil phase rotation. The investigation shows that direct optical control over the valley degree of freedom is not limited to monolayer structures. Indeed, such control is possible for systems with an arbitrary number of layers and for bulk materials. Non-resonant valley control is universal and, at optical speeds, unlocks the possibility of engineering efficient multimaterial valleytronic devices operating on quantum coherent timescales.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-O24-O7156-y</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Angular momentum ; Energy dissipation ; Energy efficiency ; Energy storage ; Information processing ; Information storage ; Lasers ; Molybdenum disulfide ; Monolayers ; Optical control ; Polarization ; Quantum phenomena ; Rotation ; Spectrum analysis ; Symmetry ; Topology ; Valleys</subject><ispartof>Nature (London), 2024-04, Vol.628 (8009), p.746-751F</ispartof><rights>Copyright Nature Publishing Group Apr 25, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Tyulnev, Igor</creatorcontrib><creatorcontrib>Jiménez-Galán, Alvaro</creatorcontrib><creatorcontrib>Poborska, Julita</creatorcontrib><creatorcontrib>Vamos, Lenard</creatorcontrib><creatorcontrib>Russell, Philip ST J</creatorcontrib><creatorcontrib>Tani, Francesco</creatorcontrib><creatorcontrib>Smirnova, Olga</creatorcontrib><creatorcontrib>Ivanov, Misha</creatorcontrib><creatorcontrib>Silva, Rui E F</creatorcontrib><creatorcontrib>Biegert, Jens</creatorcontrib><title>Valleytronics in bulk MoS2 with a topologic optical field</title><title>Nature (London)</title><description>The valley degree of freedom14 of electrons in materials promises routes towards energy-efficient information storage with enticing prospects for quantum information processing5 7. Current challenges in utilizing valley polarization are symmetry conditions that require monolayer structures8,9 or specific material engineering10 13, non-resonant optical control to avoid energy dissipation and the ability to switch valley polarization at optical speed. We demonstrate all-optical and non-resonant control over valley polarization using bulk MoS2, a centrosymmetric material without Berry curvature at the valleys. Our universal method utilizes spin angular momentum-shaped trefoil optical control pulses14,15 to switch the material's electronic topology and induce valley polarization by transiently breaking time and space inversion symmetry16 through a simple phase rotation. We confirm valley polarization through the transient generation of the second harmonic of a non-collinear optical probe pulse, depending on the trefoil phase rotation. The investigation shows that direct optical control over the valley degree of freedom is not limited to monolayer structures. Indeed, such control is possible for systems with an arbitrary number of layers and for bulk materials. Non-resonant valley control is universal and, at optical speeds, unlocks the possibility of engineering efficient multimaterial valleytronic devices operating on quantum coherent timescales.</description><subject>Angular momentum</subject><subject>Energy dissipation</subject><subject>Energy efficiency</subject><subject>Energy storage</subject><subject>Information processing</subject><subject>Information storage</subject><subject>Lasers</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Optical control</subject><subject>Polarization</subject><subject>Quantum phenomena</subject><subject>Rotation</subject><subject>Spectrum analysis</subject><subject>Symmetry</subject><subject>Topology</subject><subject>Valleys</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNyrsOwiAYQGFiNLFeXsCJxBn9KRTobDQupoPGtcHaKpWUWmiMb6-DD-B0hu8gtKCwosDU2nOaKEGymJNM0kSQ9wBFlEtBuFByiCKAWBFQTIzRxPsaABIqeYTSs7a2fIfONabw2DT40tsHPrhjjF8m3LHGwbXOupspsGuDKbTFlSntdYZGlba-nP86Rcvd9rTZk7Zzz770Ia9d3zVfyhlwlcqYS8b-uz4D9T1r</recordid><startdate>20240425</startdate><enddate>20240425</enddate><creator>Tyulnev, Igor</creator><creator>Jiménez-Galán, Alvaro</creator><creator>Poborska, Julita</creator><creator>Vamos, Lenard</creator><creator>Russell, Philip ST J</creator><creator>Tani, Francesco</creator><creator>Smirnova, Olga</creator><creator>Ivanov, Misha</creator><creator>Silva, Rui E F</creator><creator>Biegert, Jens</creator><general>Nature Publishing Group</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20240425</creationdate><title>Valleytronics in bulk MoS2 with a topologic optical field</title><author>Tyulnev, Igor ; Jiménez-Galán, Alvaro ; Poborska, Julita ; Vamos, Lenard ; Russell, Philip ST J ; Tani, Francesco ; Smirnova, Olga ; Ivanov, Misha ; Silva, Rui E F ; Biegert, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30489724733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angular momentum</topic><topic>Energy dissipation</topic><topic>Energy efficiency</topic><topic>Energy storage</topic><topic>Information processing</topic><topic>Information storage</topic><topic>Lasers</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Optical control</topic><topic>Polarization</topic><topic>Quantum phenomena</topic><topic>Rotation</topic><topic>Spectrum analysis</topic><topic>Symmetry</topic><topic>Topology</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tyulnev, Igor</creatorcontrib><creatorcontrib>Jiménez-Galán, Alvaro</creatorcontrib><creatorcontrib>Poborska, Julita</creatorcontrib><creatorcontrib>Vamos, Lenard</creatorcontrib><creatorcontrib>Russell, Philip ST J</creatorcontrib><creatorcontrib>Tani, Francesco</creatorcontrib><creatorcontrib>Smirnova, Olga</creatorcontrib><creatorcontrib>Ivanov, Misha</creatorcontrib><creatorcontrib>Silva, Rui E F</creatorcontrib><creatorcontrib>Biegert, Jens</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tyulnev, Igor</au><au>Jiménez-Galán, Alvaro</au><au>Poborska, Julita</au><au>Vamos, Lenard</au><au>Russell, Philip ST J</au><au>Tani, Francesco</au><au>Smirnova, Olga</au><au>Ivanov, Misha</au><au>Silva, Rui E F</au><au>Biegert, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Valleytronics in bulk MoS2 with a topologic optical field</atitle><jtitle>Nature (London)</jtitle><date>2024-04-25</date><risdate>2024</risdate><volume>628</volume><issue>8009</issue><spage>746</spage><epage>751F</epage><pages>746-751F</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The valley degree of freedom14 of electrons in materials promises routes towards energy-efficient information storage with enticing prospects for quantum information processing5 7. Current challenges in utilizing valley polarization are symmetry conditions that require monolayer structures8,9 or specific material engineering10 13, non-resonant optical control to avoid energy dissipation and the ability to switch valley polarization at optical speed. We demonstrate all-optical and non-resonant control over valley polarization using bulk MoS2, a centrosymmetric material without Berry curvature at the valleys. Our universal method utilizes spin angular momentum-shaped trefoil optical control pulses14,15 to switch the material's electronic topology and induce valley polarization by transiently breaking time and space inversion symmetry16 through a simple phase rotation. We confirm valley polarization through the transient generation of the second harmonic of a non-collinear optical probe pulse, depending on the trefoil phase rotation. The investigation shows that direct optical control over the valley degree of freedom is not limited to monolayer structures. Indeed, such control is possible for systems with an arbitrary number of layers and for bulk materials. Non-resonant valley control is universal and, at optical speeds, unlocks the possibility of engineering efficient multimaterial valleytronic devices operating on quantum coherent timescales.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><doi>10.1038/s41586-O24-O7156-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-04, Vol.628 (8009), p.746-751F
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_journals_3048972473
source Springer Nature - Connect here FIRST to enable access
subjects Angular momentum
Energy dissipation
Energy efficiency
Energy storage
Information processing
Information storage
Lasers
Molybdenum disulfide
Monolayers
Optical control
Polarization
Quantum phenomena
Rotation
Spectrum analysis
Symmetry
Topology
Valleys
title Valleytronics in bulk MoS2 with a topologic optical field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T17%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Valleytronics%20in%20bulk%20MoS2%20with%20a%20topologic%20optical%20field&rft.jtitle=Nature%20(London)&rft.au=Tyulnev,%20Igor&rft.date=2024-04-25&rft.volume=628&rft.issue=8009&rft.spage=746&rft.epage=751F&rft.pages=746-751F&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-O24-O7156-y&rft_dat=%3Cproquest%3E3048972473%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30489724733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3048972473&rft_id=info:pmid/&rfr_iscdi=true