Loading…

AI-Driven Prediction of Tunneling Squeezing: Comparing Rock Classification Systems

Understanding tunneling-induced ground deformation, particularly squeezing behavior, is crucial for safe and efficient underground construction. This study employs Artificial Neural Networks (ANN) and Multivariate Adaptive Regression Splines (MARS) models to predict tunneling squeezing behavior usin...

Full description

Saved in:
Bibliographic Details
Published in:Geotechnical and geological engineering 2024-05, Vol.42 (3), p.2127-2149
Main Authors: Al-Sadoon, Zaid A., Alotaibi, Emran, Omar, Maher, Arab, Mohamed G., Tahmaz, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a342t-487d93b61915ab0292208ed675f2df0ccb2fce5b105aac802e07ba987f5df4fe3
cites cdi_FETCH-LOGICAL-a342t-487d93b61915ab0292208ed675f2df0ccb2fce5b105aac802e07ba987f5df4fe3
container_end_page 2149
container_issue 3
container_start_page 2127
container_title Geotechnical and geological engineering
container_volume 42
creator Al-Sadoon, Zaid A.
Alotaibi, Emran
Omar, Maher
Arab, Mohamed G.
Tahmaz, Ali
description Understanding tunneling-induced ground deformation, particularly squeezing behavior, is crucial for safe and efficient underground construction. This study employs Artificial Neural Networks (ANN) and Multivariate Adaptive Regression Splines (MARS) models to predict tunneling squeezing behavior using various rock classification systems, namely rock quality index (Q), rock mass rating (RMR), and geological strength index (GSI). The objective is to assess model performance, evaluate the influence of classification systems, and conduct sensitivity analyses on key parameters. The investigation reveals that both ANN and MARS models exhibit enhanced accuracy as model complexity increases, up to a critical point where overfitting occurs. Comparing model performance, ANN outperforms MARS, and the most accurate ANN model is identified as ANN50-RMR with an R 2 of 0.978. This confirms the ANN’s capability to capture non-linear relationships inherent in tunneling-induced ground deformation. Choosing a rock classification system as an input parameter significantly impacts model accuracy. RMR and GSI classification systems exhibit improved performance over the conventional Q-system. In particular, GSI-based models offer more consistent and accurate predictions, emphasizing GSI’s suitability for modeling tunneling squeezing behavior. Variables’ importance analysis elucidates the dependence of parameter relevance on the chosen classification system. Sensitivity analyses on tunnel depth, diameter, and rock mass deformation modulus reveal logical correlations between these parameters and tunnel squeezing behavior, further validating model predictions. By enhancing our understanding of tunneling-induced ground deformation, these models contribute to safer and more efficient underground construction practices.
doi_str_mv 10.1007/s10706-023-02665-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3020652893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3020652893</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-487d93b61915ab0292208ed675f2df0ccb2fce5b105aac802e07ba987f5df4fe3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkaTYbb2X9KghKW88hm01ka7tZk61Qf71pV_DmYZhheN_5eBC6JHBNAMRNJCAgx0BZijznmB-hEeGCYcKpPEYjkDlgRgp6is5iXAEkGZARmk9n-C40X7bNXoOtG9M3vs28y5bbtrXrpn3PFp9ba79TdZuVftPpsG_OvfnIyrWOsXGN0QfXYhd7u4nn6MTpdbQXv3mM3h7ul-UTfn55nJXTZ6zZhPZ4UohasionknBdAZWUQmHrXHBHawfGVNQZyysCXGtTALUgKi0L4XjtJs6yMboa5nbBpxNjr1Z-G9q0UjGgkHNaSJZUdFCZ4GMM1qkuNBsddoqA2rNTAzuV2KkDO8WTiQ2m2O2_teFv9D-uH_MBceM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3020652893</pqid></control><display><type>article</type><title>AI-Driven Prediction of Tunneling Squeezing: Comparing Rock Classification Systems</title><source>Springer Link</source><creator>Al-Sadoon, Zaid A. ; Alotaibi, Emran ; Omar, Maher ; Arab, Mohamed G. ; Tahmaz, Ali</creator><creatorcontrib>Al-Sadoon, Zaid A. ; Alotaibi, Emran ; Omar, Maher ; Arab, Mohamed G. ; Tahmaz, Ali</creatorcontrib><description>Understanding tunneling-induced ground deformation, particularly squeezing behavior, is crucial for safe and efficient underground construction. This study employs Artificial Neural Networks (ANN) and Multivariate Adaptive Regression Splines (MARS) models to predict tunneling squeezing behavior using various rock classification systems, namely rock quality index (Q), rock mass rating (RMR), and geological strength index (GSI). The objective is to assess model performance, evaluate the influence of classification systems, and conduct sensitivity analyses on key parameters. The investigation reveals that both ANN and MARS models exhibit enhanced accuracy as model complexity increases, up to a critical point where overfitting occurs. Comparing model performance, ANN outperforms MARS, and the most accurate ANN model is identified as ANN50-RMR with an R 2 of 0.978. This confirms the ANN’s capability to capture non-linear relationships inherent in tunneling-induced ground deformation. Choosing a rock classification system as an input parameter significantly impacts model accuracy. RMR and GSI classification systems exhibit improved performance over the conventional Q-system. In particular, GSI-based models offer more consistent and accurate predictions, emphasizing GSI’s suitability for modeling tunneling squeezing behavior. Variables’ importance analysis elucidates the dependence of parameter relevance on the chosen classification system. Sensitivity analyses on tunnel depth, diameter, and rock mass deformation modulus reveal logical correlations between these parameters and tunnel squeezing behavior, further validating model predictions. By enhancing our understanding of tunneling-induced ground deformation, these models contribute to safer and more efficient underground construction practices.</description><identifier>ISSN: 0960-3182</identifier><identifier>EISSN: 1573-1529</identifier><identifier>DOI: 10.1007/s10706-023-02665-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Artificial neural networks ; Civil Engineering ; Classification ; Classification systems ; Compressing ; Construction ; Critical point ; Deformation ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Mathematical models ; Model accuracy ; Modulus of deformation ; Neural networks ; Original Paper ; Parameter sensitivity ; Parameters ; Performance evaluation ; Predictions ; Regression analysis ; Rock ; Rock mass rating ; Rocks ; Sensitivity analysis ; Splines ; Terrestrial Pollution ; Tunneling ; Tunnels ; Underground construction ; Waste Management/Waste Technology</subject><ispartof>Geotechnical and geological engineering, 2024-05, Vol.42 (3), p.2127-2149</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-487d93b61915ab0292208ed675f2df0ccb2fce5b105aac802e07ba987f5df4fe3</citedby><cites>FETCH-LOGICAL-a342t-487d93b61915ab0292208ed675f2df0ccb2fce5b105aac802e07ba987f5df4fe3</cites><orcidid>0000-0002-4765-0639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Al-Sadoon, Zaid A.</creatorcontrib><creatorcontrib>Alotaibi, Emran</creatorcontrib><creatorcontrib>Omar, Maher</creatorcontrib><creatorcontrib>Arab, Mohamed G.</creatorcontrib><creatorcontrib>Tahmaz, Ali</creatorcontrib><title>AI-Driven Prediction of Tunneling Squeezing: Comparing Rock Classification Systems</title><title>Geotechnical and geological engineering</title><addtitle>Geotech Geol Eng</addtitle><description>Understanding tunneling-induced ground deformation, particularly squeezing behavior, is crucial for safe and efficient underground construction. This study employs Artificial Neural Networks (ANN) and Multivariate Adaptive Regression Splines (MARS) models to predict tunneling squeezing behavior using various rock classification systems, namely rock quality index (Q), rock mass rating (RMR), and geological strength index (GSI). The objective is to assess model performance, evaluate the influence of classification systems, and conduct sensitivity analyses on key parameters. The investigation reveals that both ANN and MARS models exhibit enhanced accuracy as model complexity increases, up to a critical point where overfitting occurs. Comparing model performance, ANN outperforms MARS, and the most accurate ANN model is identified as ANN50-RMR with an R 2 of 0.978. This confirms the ANN’s capability to capture non-linear relationships inherent in tunneling-induced ground deformation. Choosing a rock classification system as an input parameter significantly impacts model accuracy. RMR and GSI classification systems exhibit improved performance over the conventional Q-system. In particular, GSI-based models offer more consistent and accurate predictions, emphasizing GSI’s suitability for modeling tunneling squeezing behavior. Variables’ importance analysis elucidates the dependence of parameter relevance on the chosen classification system. Sensitivity analyses on tunnel depth, diameter, and rock mass deformation modulus reveal logical correlations between these parameters and tunnel squeezing behavior, further validating model predictions. By enhancing our understanding of tunneling-induced ground deformation, these models contribute to safer and more efficient underground construction practices.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Civil Engineering</subject><subject>Classification</subject><subject>Classification systems</subject><subject>Compressing</subject><subject>Construction</subject><subject>Critical point</subject><subject>Deformation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Modulus of deformation</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Parameter sensitivity</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Predictions</subject><subject>Regression analysis</subject><subject>Rock</subject><subject>Rock mass rating</subject><subject>Rocks</subject><subject>Sensitivity analysis</subject><subject>Splines</subject><subject>Terrestrial Pollution</subject><subject>Tunneling</subject><subject>Tunnels</subject><subject>Underground construction</subject><subject>Waste Management/Waste Technology</subject><issn>0960-3182</issn><issn>1573-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkaTYbb2X9KghKW88hm01ka7tZk61Qf71pV_DmYZhheN_5eBC6JHBNAMRNJCAgx0BZijznmB-hEeGCYcKpPEYjkDlgRgp6is5iXAEkGZARmk9n-C40X7bNXoOtG9M3vs28y5bbtrXrpn3PFp9ba79TdZuVftPpsG_OvfnIyrWOsXGN0QfXYhd7u4nn6MTpdbQXv3mM3h7ul-UTfn55nJXTZ6zZhPZ4UohasionknBdAZWUQmHrXHBHawfGVNQZyysCXGtTALUgKi0L4XjtJs6yMboa5nbBpxNjr1Z-G9q0UjGgkHNaSJZUdFCZ4GMM1qkuNBsddoqA2rNTAzuV2KkDO8WTiQ2m2O2_teFv9D-uH_MBceM</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Al-Sadoon, Zaid A.</creator><creator>Alotaibi, Emran</creator><creator>Omar, Maher</creator><creator>Arab, Mohamed G.</creator><creator>Tahmaz, Ali</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-4765-0639</orcidid></search><sort><creationdate>20240501</creationdate><title>AI-Driven Prediction of Tunneling Squeezing: Comparing Rock Classification Systems</title><author>Al-Sadoon, Zaid A. ; Alotaibi, Emran ; Omar, Maher ; Arab, Mohamed G. ; Tahmaz, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-487d93b61915ab0292208ed675f2df0ccb2fce5b105aac802e07ba987f5df4fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Civil Engineering</topic><topic>Classification</topic><topic>Classification systems</topic><topic>Compressing</topic><topic>Construction</topic><topic>Critical point</topic><topic>Deformation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Modulus of deformation</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Parameter sensitivity</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Predictions</topic><topic>Regression analysis</topic><topic>Rock</topic><topic>Rock mass rating</topic><topic>Rocks</topic><topic>Sensitivity analysis</topic><topic>Splines</topic><topic>Terrestrial Pollution</topic><topic>Tunneling</topic><topic>Tunnels</topic><topic>Underground construction</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Sadoon, Zaid A.</creatorcontrib><creatorcontrib>Alotaibi, Emran</creatorcontrib><creatorcontrib>Omar, Maher</creatorcontrib><creatorcontrib>Arab, Mohamed G.</creatorcontrib><creatorcontrib>Tahmaz, Ali</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geotechnical and geological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Sadoon, Zaid A.</au><au>Alotaibi, Emran</au><au>Omar, Maher</au><au>Arab, Mohamed G.</au><au>Tahmaz, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Driven Prediction of Tunneling Squeezing: Comparing Rock Classification Systems</atitle><jtitle>Geotechnical and geological engineering</jtitle><stitle>Geotech Geol Eng</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>42</volume><issue>3</issue><spage>2127</spage><epage>2149</epage><pages>2127-2149</pages><issn>0960-3182</issn><eissn>1573-1529</eissn><abstract>Understanding tunneling-induced ground deformation, particularly squeezing behavior, is crucial for safe and efficient underground construction. This study employs Artificial Neural Networks (ANN) and Multivariate Adaptive Regression Splines (MARS) models to predict tunneling squeezing behavior using various rock classification systems, namely rock quality index (Q), rock mass rating (RMR), and geological strength index (GSI). The objective is to assess model performance, evaluate the influence of classification systems, and conduct sensitivity analyses on key parameters. The investigation reveals that both ANN and MARS models exhibit enhanced accuracy as model complexity increases, up to a critical point where overfitting occurs. Comparing model performance, ANN outperforms MARS, and the most accurate ANN model is identified as ANN50-RMR with an R 2 of 0.978. This confirms the ANN’s capability to capture non-linear relationships inherent in tunneling-induced ground deformation. Choosing a rock classification system as an input parameter significantly impacts model accuracy. RMR and GSI classification systems exhibit improved performance over the conventional Q-system. In particular, GSI-based models offer more consistent and accurate predictions, emphasizing GSI’s suitability for modeling tunneling squeezing behavior. Variables’ importance analysis elucidates the dependence of parameter relevance on the chosen classification system. Sensitivity analyses on tunnel depth, diameter, and rock mass deformation modulus reveal logical correlations between these parameters and tunnel squeezing behavior, further validating model predictions. By enhancing our understanding of tunneling-induced ground deformation, these models contribute to safer and more efficient underground construction practices.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10706-023-02665-5</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-4765-0639</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-3182
ispartof Geotechnical and geological engineering, 2024-05, Vol.42 (3), p.2127-2149
issn 0960-3182
1573-1529
language eng
recordid cdi_proquest_journals_3020652893
source Springer Link
subjects Accuracy
Artificial neural networks
Civil Engineering
Classification
Classification systems
Compressing
Construction
Critical point
Deformation
Earth and Environmental Science
Earth Sciences
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Mathematical models
Model accuracy
Modulus of deformation
Neural networks
Original Paper
Parameter sensitivity
Parameters
Performance evaluation
Predictions
Regression analysis
Rock
Rock mass rating
Rocks
Sensitivity analysis
Splines
Terrestrial Pollution
Tunneling
Tunnels
Underground construction
Waste Management/Waste Technology
title AI-Driven Prediction of Tunneling Squeezing: Comparing Rock Classification Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T00%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Driven%20Prediction%20of%20Tunneling%20Squeezing:%20Comparing%20Rock%20Classification%20Systems&rft.jtitle=Geotechnical%20and%20geological%20engineering&rft.au=Al-Sadoon,%20Zaid%20A.&rft.date=2024-05-01&rft.volume=42&rft.issue=3&rft.spage=2127&rft.epage=2149&rft.pages=2127-2149&rft.issn=0960-3182&rft.eissn=1573-1529&rft_id=info:doi/10.1007/s10706-023-02665-5&rft_dat=%3Cproquest_cross%3E3020652893%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-487d93b61915ab0292208ed675f2df0ccb2fce5b105aac802e07ba987f5df4fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3020652893&rft_id=info:pmid/&rfr_iscdi=true