Loading…

Quantum control of quantum systems: from room-temperature masers to generation of entanglement photons

A novel method for controlling and manipulating quantum states of both matter and field has been developed. The approach has been applied to govern the population in rotational levels of weakly aligned molecules. This technique entails the use of an adiabatically varying electric field to interact w...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. ST, Special topics Special topics, 2023-12, Vol.232 (20-22), p.3359-3367
Main Authors: Emerick, Jacob, Roy, Colin, Branković, Zorica, Rostovtsev, Yuri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-394c3e40fd3afc63c24d0a1cb52ea90a94d1bf9fc00032058b498acc6f88ae4a3
cites cdi_FETCH-LOGICAL-c334t-394c3e40fd3afc63c24d0a1cb52ea90a94d1bf9fc00032058b498acc6f88ae4a3
container_end_page 3367
container_issue 20-22
container_start_page 3359
container_title The European physical journal. ST, Special topics
container_volume 232
creator Emerick, Jacob
Roy, Colin
Branković, Zorica
Rostovtsev, Yuri
description A novel method for controlling and manipulating quantum states of both matter and field has been developed. The approach has been applied to govern the population in rotational levels of weakly aligned molecules. This technique entails the use of an adiabatically varying electric field to interact with dipole molecules. The interaction of weakly aligned molecules with a microwave field within a high finesse cavity indicates the feasibility of achieving population inversion, rendering them well suited for maser operation even at room temperature. In addition to this, the research has shown that the absorption of molecules can be controlled too making it exceptionally well suited for gas sensing with high sensitivity and selectivity. These sensors hold promise across diverse domains, including technology, the sciences, environmental monitoring, biology, and medicine. Furthermore, the technique has the potential for employing control techniques to vacuum fields that holds promise for the generation of strongly correlated, entangled photons. This development could have far-reaching implications in quantum technology, and various applications in quantum information science and beyond.
doi_str_mv 10.1140/epjs/s11734-023-01009-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927855507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927855507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-394c3e40fd3afc63c24d0a1cb52ea90a94d1bf9fc00032058b498acc6f88ae4a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKu_wYDn2Mkm2d14k-IXCCLoOaRpUlu6yTbJQvvv3XUrHj3NO8M8M_AgdE3hllIOM9tu0ixRWjFOoGAEKIAk-xM0oVJQUnKgp7-ZCXGOLlLaAIiykGyC3Hunfe4abILPMWxxcHh3HKVDyrZJd9jF0OAYQkP6vrVR5y5a3OhkY8I54JX1w3Ad_IBbn7VfbW3TB9x-hRx8ukRnTm-TvTrWKfp8fPiYP5PXt6eX-f0rMYzxTJjkhlkObsm0MyUzBV-CpmYhCqslaMmXdOGkMwDAChD1gstaG1O6utaWazZFN-PdNoZdZ1NWm9BF379UhSyqWggBVb9VjVsmhpSidaqN60bHg6KgBqlqkKpGqaqXqn6kqn1P1iOZesKvbPy7_x_6Db8rgdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927855507</pqid></control><display><type>article</type><title>Quantum control of quantum systems: from room-temperature masers to generation of entanglement photons</title><source>Springer Link</source><creator>Emerick, Jacob ; Roy, Colin ; Branković, Zorica ; Rostovtsev, Yuri</creator><creatorcontrib>Emerick, Jacob ; Roy, Colin ; Branković, Zorica ; Rostovtsev, Yuri</creatorcontrib><description>A novel method for controlling and manipulating quantum states of both matter and field has been developed. The approach has been applied to govern the population in rotational levels of weakly aligned molecules. This technique entails the use of an adiabatically varying electric field to interact with dipole molecules. The interaction of weakly aligned molecules with a microwave field within a high finesse cavity indicates the feasibility of achieving population inversion, rendering them well suited for maser operation even at room temperature. In addition to this, the research has shown that the absorption of molecules can be controlled too making it exceptionally well suited for gas sensing with high sensitivity and selectivity. These sensors hold promise across diverse domains, including technology, the sciences, environmental monitoring, biology, and medicine. Furthermore, the technique has the potential for employing control techniques to vacuum fields that holds promise for the generation of strongly correlated, entangled photons. This development could have far-reaching implications in quantum technology, and various applications in quantum information science and beyond.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjs/s11734-023-01009-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic ; Biomonitoring ; Classical and Continuum Physics ; Condensed Matter Physics ; Control methods ; Dipoles ; Electric fields ; Environmental monitoring ; Foundations of Quantum Mechanics ; Gas sensors ; Many Body Systems ; Masers ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Non-Equilibrium Quantum Physics ; Optical and Plasma Physics ; Photons ; Physics ; Physics and Astronomy ; Population inversion ; Quantum entanglement ; Quantum phenomena ; Regular Article ; Room temperature</subject><ispartof>The European physical journal. ST, Special topics, 2023-12, Vol.232 (20-22), p.3359-3367</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-394c3e40fd3afc63c24d0a1cb52ea90a94d1bf9fc00032058b498acc6f88ae4a3</citedby><cites>FETCH-LOGICAL-c334t-394c3e40fd3afc63c24d0a1cb52ea90a94d1bf9fc00032058b498acc6f88ae4a3</cites><orcidid>0000-0002-0864-819X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Emerick, Jacob</creatorcontrib><creatorcontrib>Roy, Colin</creatorcontrib><creatorcontrib>Branković, Zorica</creatorcontrib><creatorcontrib>Rostovtsev, Yuri</creatorcontrib><title>Quantum control of quantum systems: from room-temperature masers to generation of entanglement photons</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>A novel method for controlling and manipulating quantum states of both matter and field has been developed. The approach has been applied to govern the population in rotational levels of weakly aligned molecules. This technique entails the use of an adiabatically varying electric field to interact with dipole molecules. The interaction of weakly aligned molecules with a microwave field within a high finesse cavity indicates the feasibility of achieving population inversion, rendering them well suited for maser operation even at room temperature. In addition to this, the research has shown that the absorption of molecules can be controlled too making it exceptionally well suited for gas sensing with high sensitivity and selectivity. These sensors hold promise across diverse domains, including technology, the sciences, environmental monitoring, biology, and medicine. Furthermore, the technique has the potential for employing control techniques to vacuum fields that holds promise for the generation of strongly correlated, entangled photons. This development could have far-reaching implications in quantum technology, and various applications in quantum information science and beyond.</description><subject>Atomic</subject><subject>Biomonitoring</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Control methods</subject><subject>Dipoles</subject><subject>Electric fields</subject><subject>Environmental monitoring</subject><subject>Foundations of Quantum Mechanics</subject><subject>Gas sensors</subject><subject>Many Body Systems</subject><subject>Masers</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Non-Equilibrium Quantum Physics</subject><subject>Optical and Plasma Physics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Population inversion</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Regular Article</subject><subject>Room temperature</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKu_wYDn2Mkm2d14k-IXCCLoOaRpUlu6yTbJQvvv3XUrHj3NO8M8M_AgdE3hllIOM9tu0ixRWjFOoGAEKIAk-xM0oVJQUnKgp7-ZCXGOLlLaAIiykGyC3Hunfe4abILPMWxxcHh3HKVDyrZJd9jF0OAYQkP6vrVR5y5a3OhkY8I54JX1w3Ad_IBbn7VfbW3TB9x-hRx8ukRnTm-TvTrWKfp8fPiYP5PXt6eX-f0rMYzxTJjkhlkObsm0MyUzBV-CpmYhCqslaMmXdOGkMwDAChD1gstaG1O6utaWazZFN-PdNoZdZ1NWm9BF379UhSyqWggBVb9VjVsmhpSidaqN60bHg6KgBqlqkKpGqaqXqn6kqn1P1iOZesKvbPy7_x_6Db8rgdc</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Emerick, Jacob</creator><creator>Roy, Colin</creator><creator>Branković, Zorica</creator><creator>Rostovtsev, Yuri</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0864-819X</orcidid></search><sort><creationdate>20231201</creationdate><title>Quantum control of quantum systems: from room-temperature masers to generation of entanglement photons</title><author>Emerick, Jacob ; Roy, Colin ; Branković, Zorica ; Rostovtsev, Yuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-394c3e40fd3afc63c24d0a1cb52ea90a94d1bf9fc00032058b498acc6f88ae4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic</topic><topic>Biomonitoring</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Control methods</topic><topic>Dipoles</topic><topic>Electric fields</topic><topic>Environmental monitoring</topic><topic>Foundations of Quantum Mechanics</topic><topic>Gas sensors</topic><topic>Many Body Systems</topic><topic>Masers</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Non-Equilibrium Quantum Physics</topic><topic>Optical and Plasma Physics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Population inversion</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Regular Article</topic><topic>Room temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emerick, Jacob</creatorcontrib><creatorcontrib>Roy, Colin</creatorcontrib><creatorcontrib>Branković, Zorica</creatorcontrib><creatorcontrib>Rostovtsev, Yuri</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emerick, Jacob</au><au>Roy, Colin</au><au>Branković, Zorica</au><au>Rostovtsev, Yuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum control of quantum systems: from room-temperature masers to generation of entanglement photons</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>232</volume><issue>20-22</issue><spage>3359</spage><epage>3367</epage><pages>3359-3367</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>A novel method for controlling and manipulating quantum states of both matter and field has been developed. The approach has been applied to govern the population in rotational levels of weakly aligned molecules. This technique entails the use of an adiabatically varying electric field to interact with dipole molecules. The interaction of weakly aligned molecules with a microwave field within a high finesse cavity indicates the feasibility of achieving population inversion, rendering them well suited for maser operation even at room temperature. In addition to this, the research has shown that the absorption of molecules can be controlled too making it exceptionally well suited for gas sensing with high sensitivity and selectivity. These sensors hold promise across diverse domains, including technology, the sciences, environmental monitoring, biology, and medicine. Furthermore, the technique has the potential for employing control techniques to vacuum fields that holds promise for the generation of strongly correlated, entangled photons. This development could have far-reaching implications in quantum technology, and various applications in quantum information science and beyond.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjs/s11734-023-01009-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0864-819X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2023-12, Vol.232 (20-22), p.3359-3367
issn 1951-6355
1951-6401
language eng
recordid cdi_proquest_journals_2927855507
source Springer Link
subjects Atomic
Biomonitoring
Classical and Continuum Physics
Condensed Matter Physics
Control methods
Dipoles
Electric fields
Environmental monitoring
Foundations of Quantum Mechanics
Gas sensors
Many Body Systems
Masers
Materials Science
Measurement Science and Instrumentation
Molecular
Non-Equilibrium Quantum Physics
Optical and Plasma Physics
Photons
Physics
Physics and Astronomy
Population inversion
Quantum entanglement
Quantum phenomena
Regular Article
Room temperature
title Quantum control of quantum systems: from room-temperature masers to generation of entanglement photons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T01%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20control%20of%20quantum%20systems:%20from%20room-temperature%20masers%20to%20generation%20of%20entanglement%20photons&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Emerick,%20Jacob&rft.date=2023-12-01&rft.volume=232&rft.issue=20-22&rft.spage=3359&rft.epage=3367&rft.pages=3359-3367&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjs/s11734-023-01009-x&rft_dat=%3Cproquest_cross%3E2927855507%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-394c3e40fd3afc63c24d0a1cb52ea90a94d1bf9fc00032058b498acc6f88ae4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2927855507&rft_id=info:pmid/&rfr_iscdi=true